Scala Slick Cake Pattern: over 9000 classes? - scala

I'm developing a Play! 2.2 application in Scala with Slick 2.0 and I'm now tackling the data access aspect, trying to use the Cake Pattern.
It seems promising but I really feel like I need to write a huge bunch of classes/traits/objects just to achieve something really simple. So I could use some light on this.
Taking a very simple example with a User concept, the way I understand it is we should have:
case class User(...) //model
class Users extends Table[User]... //Slick Table
object users extends TableQuery[Users] { //Slick Query
//custom queries
}
So far it's totally reasonable. Now we add a "Cake Patternable" UserRepository:
trait UserRepository {
val userRepo: UserRepository
class UserRepositoryImpl {
//Here I can do some stuff with slick
def findByName(name: String) = {
users.withFilter(_.name === name).list
}
}
}
Then we have a UserService:
trait UserService {
this: UserRepository =>
val userService: UserService
class UserServiceImpl { //
def findByName(name: String) = {
userRepo.findByName(name)
}
}
}
Now we mix all of this in an object :
object UserModule extends UserService with UserRepository {
val userRepo = new UserRepositoryImpl
val userService = new UserServiceImpl
}
Is UserRepository really useful? I could write findByName as a custom query in Users slick object.
Let's say I have another set of classes like this for Customer, and I need to use some UserService features in it.
Should I do:
CustomerService {
this: UserService =>
...
}
or
CustomerService {
val userService = UserModule.userService
...
}

OK, those sound like good goals:
Abstract over the database library (slick, ...)
Make the traits unit testable
You could do something like this:
trait UserRepository {
type User
def findByName(name: String): User
}
// Implementation using Slick
trait SlickUserRepository extends UserRepository {
case class User()
def findByName(name: String) = {
// Slick code
}
}
// Implementation using Rough
trait RoughUserRepository extends UserRepository {
case class User()
def findByName(name: String) = {
// Rough code
}
}
Then for CustomerRepository you could do:
trait CustomerRepository { this: UserRepository =>
}
trait SlickCustomerRepository extends CustomerRepository {
}
trait RoughCustomerRepository extends CustomerRepository {
}
And combine them based on your backend whims:
object UserModuleWithSlick
extends SlickUserRepository
with SlickCustomerRepository
object UserModuleWithRough
extends RoughUserRepository
with RoughCustomerRepository
You can make unit-testable objects like so:
object CustomerRepositoryTest extends CustomerRepository with UserRepository {
type User = // some mock type
def findByName(name: String) = {
// some mock code
}
}
You are correct to observe that there is a strong similarity between
trait CustomerRepository { this: UserRepository =>
}
object Module extends UserRepository with CustomerRepository
and
trait CustomerRepository {
val userRepository: UserRepository
import userRepository._
}
object UserModule extends UserRepository
object CustomerModule extends CustomerRepository {
val userRepository: UserModule.type = UserModule
}
This is the old inheritance/aggregation tradeoff, updated for the Scala world. Each approach has advantages and disadvantages. With mixing traits, you will create fewer concrete objects, which can be easier to keep track of (as in above, you only have a single Module object, rather than separate objects for users and customers). On the other hand, traits must be mixed at object creation time, so you couldn't for example take an existing UserRepository and make a CustomerRepository by mixing it in -- if you need to do that, you must use aggregation. Note also that aggregation often requires you to specify singleton-types like above (: UserModule.type) in order for Scala to accept that the path-dependent types are the same. Another power that mixing traits has is that it can handle recursive dependencies -- both the UserModule and the CustomerModule can provide something to and require something from each other. This is also possible with aggregation using lazy vals, but it is more syntactically convenient with mixing traits.

Check out my recently published Slick architecture cheat sheet. It does not abstract over the database driver, but it is trivial do change it that way. Just wrap it in
class Profile(profile: JdbcProfile){
import profile.simple._
lazy val db = ...
// <- cheat sheet code here
}
You do not need the cake pattern. Just put it all in one file and you get away without it. The cake pattern allows you to split the code into different files, if you are willing to pay the syntax overhead. People also use the cake pattern to create different configurations including different combinations of services, but I don't think this is relevant to you.
If the repeated syntax overhead per database table bothers you, generate the code. The Slick code-generator is customizable exactly for that purpose:
If you want to blend hand-written and generated code, either feed the hand-written code into the code-generator or use a scheme, where the generated code inherits from hand-written cor vise-versa.
For replacing Slick by something else, replace the DAO methods with queries using another library.

Related

Scala Dependency Injection with Cake Pattern

I've been following this article which describes how to achieve dependency injection in Scala via the Cake Pattern:
http://jonasboner.com/real-world-scala-dependency-injection-di/
I'm kind of new to Scala and I admit some of it went over my head, so far I've got the following working:
// Setup the component and interface
trait AccountRepositoryComponent {
val accountRepository: AccountRepositoryInterface
trait AccountRepositoryInterface {
def message: String
}
}
// An implementation
trait MyAccountRepositoryComponent extends AccountRepositoryComponent {
object AccountRepository extends AccountRepositoryInterface {
def message: String = "Hello"
}
}
// Object to configure which implementations to use and retrieve them
object ComponentRegistry extends MyAccountRepositoryComponent {
val accountRepository = AccountRepository
}
// Example service using the above
object AccountService {
val repo = ComponentRegistry.accountRepository
def say: String = repo.message
}
println(AccountService.say)
What I'm failing to understand is how I would now pass in a fake repository to Account Service, say to change the output to "Test" rather than "Hello"?
There are various ways this could be modified to achieve a workable result, depending on what counts as a workable result for your situation. I'll go through a simpler possibility here.
First, the ComponentRegistry needs to become a trait, so it can be mixed in to the AccountService:
// Trait to configure which component implementations to use and retrieve them
object ComponentRegistry extends MyAccountRepositoryComponent {
val accountRepository = AccountRepository
}
// Example service using the above
object AccountService extends ComponentRegistry {
def say: String = accountRepository.message
}
println(AccountService.say)
This should print "Hello" as before. To set up a test case, add the following:
// Test implementation
trait TestAccountRepositoryComponent extends AccountRepositoryComponent {
object AccountRepository extends AccountRepositoryInterface {
def message: String = "Test"
}
}
// trait to configure test component implementations
trait TestComponentRegistry extends TestAccountRepositoryComponent {
val accountRepository = AccountRepository
}
Now we can set up a service that uses the test components:
// Example service using the above
object AccountService extends TestComponentRegistry {
//val repo = ComponentRegistry.accountRepository
def say: String = accountRepository.message
}
println(AccountService.say)
This should print "Test".
Note that you would probably want your AccountService to define its functionality in terms of other mixins/traits, which would expect the appropriate components to be available (layered into the "cake"), but wouldn't know which implementation was in use. Eg:
trait CustomerApi {
self: AccountRepositoryComponent => // Expects an implementation of AccountRepositoryComponent to be mixed in
def say: String = accountRepository.message
}
Now the method say is implemented without knowing what version of AccountRepository it will interact with, but knowing one must be provided (checked at compile time). So we can write:
object AccountService extends CustomerApi with ComponentRegistry
object TestAccountService extends CustomerApi with TestComponentRegistry
Calling println(AccountService.say) will generate "Hello", while calling println(TestAccountService.say) will generate "Test".
This post provides a succinct example of that (followed by an interesting alternative).

Abstract fields for dependency injection

In Scala, is there there anything wrong with using the below method of dependency injection.
// Define an interface
trait FileStorage {
def readFile(filename:String):OutputStream
}
// And an implementation
class S3FileStorage extends FileStorage {
def readFile(filename:String):OutputStream = ???
}
// Define our service as a trait with abstract fields that need to be
// injected in order to construct. All implementation details go here.
trait FileHTTPServer {
val fileStorage:FileStorage
def fetchFile( session:Session, filename:String ) = ???
}
Now we wire things up
// Wire up a concrete file service that we actually use in code
// No implementation details should go here, we're simply wiring up a FileHttpServerl
// An entire project could be wired up this way in a central location if desired.
object S3FileHttpServer extends FileHTTPServer {
val fileStorage = new S3FileStorage
}
// We could also do this anonymously
val myHttpServer = new FileHttpServer {
val fileStorage = new S3FileStorage
}
// Or create a mocked version for testing
val mockedHttpServer = new FileHttpServer {
val fileStorage = mock[FileStorage]
}
Obviously the Cake pattern provides more flexibility (particularly around self-types), however for simpler use cases this has much less boilerplate, while still providing compile time checking and a clean unambiguous interface.
Yes, this is absolutely fine approach. And yes, sometimes you can use constructor injection, nothing wrong with that too. But with constructor injection you have to propagate your dependencies manually, while with cake pattern your dependencies are propagated automatically via self-type annotations. So for big projects constructor injection actually lead to more boilerplate than cake pattern, especially at the construction site (where you create all your objects and set up dependencies between them).
However, what you have presented is not full-fledged cake pattern. In real cake pattern there is an additional layer around business logic classes, so-called components, and you do not wire up logic classes directly but components instead.
trait FileStorageComponent {
def fileStorage: FileStorage
trait FileStorage {
def readFile(filename: String): OutputStream
}
}
trait S3FileStorageComponent extends FileStorageComponent {
val fileStorage = new S3FileStorage
class S3FileStorage extends FileStorage {
def readFile(filename: String): OutputStream = ???
}
}
trait FileHttpServerComponent {
self: FileStorageComponent =>
val fileHttpServer = new FileHttpServer
class FileHttpServer {
def fetchFile(session: Session, filename: String) = ???
}
}
// Wiring
object S3FileHttpServer extends FileHttpServerComponent with S3FileStorageComponent
// Anonymous
val server = new FileHttpServerComponent with S3FileStorageComponent
// Mocking
object TestFileHttpServer extends FileHttpServerComponent with FileStorageComponent {
val fileStorage = mock[FileStorage]
}
In this approach there are more boilerplate in traits definitions, but in return you have greater flexibility and very clear dependency management on the use place. For example, here is how program entry point in one of my projects looks like:
object Main
extends MainUI
with DefaultActorsManagerComponent
with DefaultPreferencesAccessComponent
with DefaultModelComponent
with DefaultMainWindowViewComponent
with DefaultMainWindowControllerComponent
with MainWindowReporterComponent
with DefaultClientActorComponent
with DefaultResponseParserActorComponent
with DefaultArchiverActorComponent
with DefaultMainWindowAccessActorComponent
with DefaultUrlParserComponent
with DefaultListenerActorComponent
with DefaultXmlPrettifierComponent
All main program components are in one place. Pretty neat IMO.

How to separate business classes and auxiliary traits in Cake Pattern?

The Cake Pattern looks as follows:
trait UserRepositoryComponent {
val userRepository: UserRepository
class UserRepository {...}
}
trait UserServiceComponent {this: UserRepositoryComponent =>
val userService: UserService
class UserService {...}
}
The classes UserService and UserRepository are real business classes. We can use them with and without the Cake pattern.
The traits UserServiceComponent and UserRepositoryComponent, on the contrary, are just auxiliary boilerplate code rather than real business components. We need them just to implement the pattern.
Given that, I would not like UserService and UserRepository to be inner classes of UserServiceComponent and UserRepositoryComponent. Does it make sense? Can I implement them not as inner classes?
You don’t need to wrap your implementation classes, e.g. you could write something like that:
trait UserRepository { ... }
trait UserService { this: UserRepository => ... }
But creating you components would need to instantiate a single object containing all your components at once:
new UserRepositoryImpl with UserServiceImpl
So, methods from UserRepository and UserService would be mixed in a single instance, which is not necessarily what you want (and which would cause problems if your components define methods with the same name).
Thus, wrapping your components in “boilerplate” traits creates useful namespaces.

Question about Cake Pattern

Let there a few separate DAO classes OrderDAO, ProductDAO, and CustomerDAO that store/retrieve data in the database and share a single instance DataSource (the database connection factory).
In order to create a DataSource instance and plug it in DAOs we usually use Spring DI. Now I would like to do that in Scala without any DI framework.
I've read about the cake pattern, and it looks like I should do the following:
trait DatabaseContext { val dataSource:Datasource }
trait OrderDAO {this:DatabaseContext =>
... // use dataSource of DatabaseContext
}
trait ProductDAO {this:DatabaseContext =>
... // use dataSource of DatabaseContext
}
object DAOImpl extends OrderDAO with ProductDAO with DatabaseContext {
val dataSource = ... // init the data source
}
Do I understand the cake pattern correctly?
Can I implement these DAOs differently using the cake pattern ?
What does it provide that DI frameworks like Spring do not ?
How can I create separate OrderDAOImpl and ProductDAOImpl objects sharing the same DataSource instance instead of one big DAOImpl?
The advantages of the cake pattern are:
Unlike configuration-file-based DI solutions, matching contracts to
implementations is done at compile time, which reduces class-finding
and compatibility issues. However, many DI engines have an
alternative in-code configuration feature
No third-party libraries
are used. Self-type annotations which let you use the pattern are a
native language feature. No special syntax is used to retrieve the
implementation of the contract
Forgetting to specify an
implementation for a component needed by another component results in
a runtime error - just check this article
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di.html
and try not specifying one of the components or specifying a
trait instead of a concrete class in any of the cake pattern
examples or even forgetting to initialize a val corresponding to a component needed
However, to experience these advantages, you need to more strictly adhere to the architecture of the pattern - check the same article and note the wrapping traits that contain the actual contracts and implementations.
Your examples do not seem to be strictly the cake pattern. In your case you could've just used inheritance to create implementations for your traits and use separate classes for each DAO component. In the cake pattern the consuming code would be a component just like the DAO code, and the code assembling the dependencies together would stand alone from it.
To illustrate the cake pattern, you would have to add consuming classes (domain layer or UI layer) to your example. Or it the case your DAO components accessed each other's features you could illustrate the cake pattern on you DAO alone.
to make it short,
trait OrderDAOComponent {
val dao: OrderDAO
trait OrderDAO {
def create: Order
def delete(id: Int): Unit
//etc
}
}
trait OrderDAOComponentImpl extends OrderDAOComponent {
class OrderDAOJDBCImpl extends OrderDAO {
def create: Order = {/*JDBC-related code here*/}
def delete(id: Int) {/*JDBC-related code here*/}
//etc
}
}
//This one has a dependency
trait OrderWebUIComponentImpl {
this: OrderDAOComponent =>
class OrderWebUI {
def ajaxDelete(request:HttpRequest) = {
val id = request.params("id").toInt
try {
dao.delete(id)
200
}
catch {
case _ => 500
}
}
}
}
//This matches contracts to implementations
object ComponentRegistry extends
OrderDAOComponentImpl with
OrderWebUIComponentImpl
{
val dao = new OrderDAOJDBCImpl
val ui = new OrderWebUI
}
//from some front-end code
val status = ComponentRegistry.ui.ajaxDelete(request)
More on your example. I think it could be more like cake if:
trait DatabaseContext { val dataSource:Datasource }
trait OrderDAOComponent {this:DatabaseContext =>
trait OrderDAOImpl {
... // use dataSource of DatabaseContext
}
}
trait ProductDAOComponent {this:DatabaseContext =>
trait ProductDAOImpl {
... // use dataSource of DatabaseContext
}
}
object Registry extends OrderDAOComponent with ProductDAOComponent with DatabaseContextImpl {
val dataSource = new DatasourceImpl //if Datasource is a custom trait, otherwise wrapping needed
val orderDAO = new OrderDAOImpl
val productDAO = new ProductDAOImpl
}
//now you may use them separately
Registry.orderDAO.//
Maybe:
Statically checked at compile time.

Jonas Bonér's dependency injection strategy seems limiting--but maybe I don't understand it

I've read this article several times:
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di.html
I think that I get it. However there's something that I'm not quite getting.
Looking at his UserService example, I see that he's set up UserRepositoryComponent to encapsulate UserRepository. But what I don't understand is why UserRepositoryComponent plays two roles: it encapsulates UserRepository and also offers a reference to a UserRepository object.
I'm trying to imagine how I would use this pattern if I wanted to create a service that depends on two UserRepository instances. Maybe the job of the new service is to copy users from a "source" UserRepository to a "destination" UserRepository. So I'm imagining something like this:
trait CopyUserServiceComponent {
val source: UserRepositoryComponent
val destination: UserRepositoryComponent
class CopyUserServiceComponent {
...
}
}
But this is different from the original pattern. In this case I'm defining the dependencies in the component itself instead of inheriting them from some other component. But this seems to me to be the right way to do it: the components should declare their dependencies, not instances of their included services.
What am I missing here?
In this case I'm defining the dependencies in the component itself instead of inheriting them from some other component.
The cake pattern doesn't use inheritance to declare dependencies. Did you see any "extend" in UserServiceComponent?
But this seems to me to be the right way to do it: the components should declare their dependencies, not instances of their included services.
But that's exactly what the cake pattern does: declare dependencies! Perhaps if the example contained def userRepositoryFactory = new UserRepository instead of val userRepository = new UserRepository, that would have been more clear?
So, let's go back to your example:
trait CopyUserServiceComponent {
val source: UserRepositoryComponent
val destination: UserRepositoryComponent
class CopyUserServiceComponent {
...
}
}
Let's see the things we can't do with that:
trait CopyUserServiceComponent {
// The module will need to see my internals!
private val source: UserRepositoryComponent
private val destination: UserRepositoryComponent
class CopyUserServiceComponent {
...
}
}
trait CopyBigUserServiceComponent extends CopyServiceComponent {
// Any change in implementation will have to be reflected in the module!
val tmp: UserRepositoryComponent
...
}
On the other hand...
trait UserRepositoryComponent {
val userRepositoryFactory: () => UserRepository
class UserRepository {
...
}
}
trait CopyUserServiceComponent {
self: UserRepositoryComponent =>
// No problem here
private val source: UserRepository = userRepositoryFactory()
private val destination: UserRepository = userRepositoryFactory()
class CopyUserServiceComponent {
...
}
}
trait CopyBigUserServiceComponent extends CopyServiceComponent {
self: UserRepositoryComponent =>
// No problem here either
val tmp: : UserRepository = userRepositoryFactory()
...
}
EDIT
Complementating the answer, let's consider two different needs:
I need many instances of UserRepository.
In this case, you are applying the pattern at the wrong level. In Jonas' example, UserRepository is at the level of a factory-providing singleton.
So, in that case, you wouldn't do UserRepository and UserRepositoryComponent but, say, UserRepositoryFactory and UserRepositoryFactoryComponent.
I need precisely two singleton UserRepository.
In this case, just do something like this:
trait UserRepositoryComponent {
val sourceUserService: UserService
val destinationUserService: UserService
class UserService ...
}
I assume, Jonas in his article refers to a widely accepted methodology of building scalable applications called Composite Software Construction that in a few words can be explained as follows: entire application (orchestrated on a meta-level) is an assembly built of independend components, which in their turn are compositions of other components and services. In terms of composite software, 'cake' (ComponentRegistry object in the example) is an assembly of components ('UserServiceComponent' and 'UserRepositoryComponent') etc. Whilst in the example components enclose service implementations it can hardly happen in the real-world.
In your example you don't need to define an inner class - you can put your workflow in an ordinary method:
trait CopyUserServiceComponent {
val source: UserRepositoryComponent
val destination: UserRepositoryComponent
def copy = {...}
}
It perfectly conforms to original pattern - essential feature of the cake is not [only] specifying dependencies via self-type annotations, but also ability to abstract from the concrete implementation, till the moment when you need to build an assembly from the components.