find RMS value in frequency domain - matlab

i would like to find RMS value in frequency domain,i used this site for help
http://www.dsprelated.com/showmessage/123177/1.php
but there it is calculated using FFT,but what if i am using periodgram?instead of this code
X = fft(x)
Parseval's Theorem
sum(x.^2) = sum(abs(X).^2)/N
RMS == sqrt(sum(x.^2))/N) = sqrt(sum(abs(X/N).^2))
how does code change in case of periodogram?thanks in advance

The periodogram P = P(f) expresses how the power of a signal x = x(t) is distributed across the different frequencies. As such, it can be seen as a function which associates to a frequency f the squared of the absolute value of the Fourier transform of x evaluated at f.
In other words, in terms of your notation, the periodogram of x = x(t) goes as P(f) = |X|^2(f).
As a consequence, the RMS satisfies
RMS = sqrt(sum(P))/N.
CAVEAT:
I am not quite convinced on your normalization factors. In principle, Parseval's theorem states that the Fourier transform is isometric isomorphism of L^2 to itself. Hence the norm of a signal is preserved once a Fourier transform is done.
Nonetheless, different definition of such transformations can lead to different normalization factors (e.g. your 1/N). In a nutshell, attention should be paid to that constant.

It is a very old case, but i did a simple program which calculates the power in time domain and frequency domain. For the calculating RMS value of a signal in frequency domain only the integration of periodogram give the same result as in time domain
Below ist the code with comments in polish but variables are in english so You should guess what each line does.
clear all
clc
N=1024; %liczba próbek sygna?u
f1=5; %cz?stotliwo?ci sk?adowych sinusoidalnych sygna?u
f2=15;
f3=30;
fs=1000; %czestotliwosc próbkowania
td=1/fs; %okres sygnalu
t=(0:N-1)*td;
war=0.8; %wariancja zak?ócenia
sig=sqrt(war); %odchylenie standardowe zak?ócenia
Nf=1024; %liczba próbek transformaty Fouriera
%sygna? losowy i deterministyczny
for i=1:N
%yn(i)=randn;
%y(i)=sin(2*pi*f1*td*i) + 0.5*sin(2*pi*f2*td*i) + ...
%0.25*sin(2*pi*f3*td*i) +sig*randn;
y(i)=5*sin(2*pi*f1*td*i)+sin(2*pi*f2*td*i);
end
%Obliczenie wartosci skutecznej sygnału
RMS_calc_by_hand=sqrt((1/Nf)*sum(y.^2));
RMS_time_domain=rms(y);
%transformata Fouriera
Y=2*abs(fft(y,Nf))/Nf;
Y=Y(1:Nf/2);
df=fs/Nf;
f=0:df:fs/2-df;
%Inna forma zapisu
%f=df*(0:Nf/2-1);
% wykres sygnału rzeczywistego
subplot(3,2,1);
plot(t,y);
title('a(t)');
xlabel('t [s]');
ylabel('a [mm/s]');
subplot(3,2,2);
plot(f,Y);
% formatowanie wykresu
title('a(f)');
xlabel('f [Hz]');
ylabel('a [mm/s]');
%gestosc widmowa mocy
subplot(3,2,3);
%PSD
[P,w] = periodogram(y,[],Nf,fs);
plot (w,P);
title('gestosc widmowa mocy periodogram');
RMS_freq_domain =sqrt(trapz(w,P));

Related

How can find the Fourier Coefficents of this DFT?

I have a data which contains 16 elements:
x=[8.57837e-08, 2.07482e-06, 4.43796e-06, 7.66462e-06, 1.10232e-05, 1.35811e-05, 1.27958e-05, 5.94217e-06, 2.49168e-08, -6.58389e-06, -1.30551e-05, -1.345e-05, -1.07471e-05, -7.38637e-06, -4.42876e-06, -1.88811e-06 ];
A = length(x)
I do DTFT-DFT like dirac signals:
n=0:A;
syms w
X_w=0;
for i=1:length(x)
X_w=X_w+x(i)*exp(-j*w*n(i));
end
figure;fplot(angle(X_w),[0 2*pi]),title('DTFT phase graph')
figure;fplot(abs(X_w),[0 2*pi]),title('DTFT amplitude graph')
hold on
%DFT
N=50;
k=0:N-1;
DFT_X=[];
for k=0:N-1
Xk=0;
for i=1:length(x)
Xk=Xk+x(i).*exp(-j*(2*pi/N).*k.*n(i));
end
DFT_X=[DFT_X Xk];
end
w=2*pi/N*(0:N-1);
stem(w,abs(DFT_X))`
The problem is I want to write this signal with cosinus and sinus components. But I don't really know how can I do.
Thank you all,
Emre.
Direct computation of the Fourier coefficients might be a better option than trying to relate the DFT to the DFS. Looking at the continuous time formulas:
all you'd need to do is sum the input signal x multiplied (element wise) by a cosine over it's domain for the real coefficient and sum the input signal x multiplied (element wise) by a sine over its domain for the imaginary coefficients.
Secondly, you could potentially use conjugate symmetry and these formulas to calculate the relationship between your Xk and the desired An and Bn coefficients.
Xk = (An-j*Bn)/2
and
Xk* = (An+j*Bn)/2)

Scaling problems with IFFT in Matlab

I'm studying the IFFT in Matlab by applying it to a Gaussian. According to Wikipedia tables, the Fourier transform pair would be
F(w) = sqrt(pi/a) * exp(-w^2/(4a))
in frequency, and
f(t) = exp(-at^2)
in time. I modified the code in a previous question plus Cris Luengo's answer to perform this IFFT.
a = 0.333;
ts = 1e4; % time sampling
L = 1000*ts; % no. sample points
ds = 1/ts;
f = -floor(L/2):floor((L-1)/2); % freq vector
f = f/ts;
w = 2*pi*f; % angular freq
Y = sqrt(pi/a)*exp(-w.^2/(4*a));
y = ts*ifftshift(ifft(fftshift(Y)));
t = (-L/2:L/2-1)*ts/L; % time vector
f = exp(-a*t.^2); % analytical solution
figure; subplot(1,2,1); hold on
plot(t,real(y),'.--')
plot(t,real(f),'-')
xlabel('time, t')
title('real')
legend('numerical','analytic')
xlim([-5,5])
subplot(1,2,2); hold on
plot(w,imag(y),'.--')
plot(w,imag(f),'-')
xlabel('time, t')
title('imag')
legend('numerical','analytic')
xlim([-5,5])
When I compare the result of IFFT with the analytical expression, they don't seem to agree:
I'm not sure where the mistake is. Have I scaled the IFFT properly? Is there an error in how I define the linear/angular frequency?
Edit: For some reason, when I define L=ts^2 the analytical and numerical solutions seem to agree (L = no. sampling points, ts = time sample).
Starting from the analytical solution, let's rephrase things a bit. You have a sampling of the function f(t) = exp(-a*t^2), and the way you've constructed the analytical answer you're collecting L=1000*ts=1e7 samples at a sampling rate of Ts=ts/L=1e-3. This means that your sampling frequency is Fs=1/Ts=1e3.
Since you want to compare against results obtained with fft/ifft, you should be considering digital or discrete frequencies, meaning the values you define for your transform will correspond to the digital frequencies
frd = (-L/2:L/2-1)/L;
Mapping this to angular frequencies, we have:
w = 2*pi*frd;
But when you're trying to compute the values, you also need to keep in mind that these frequencies should represent samples of the continuous time spectrum you're expecting. So you scale these values by your sampling frequency:
Y = sqrt(pi/a)*exp(-(Fs*w).^2/(4*a));
y = Fs*ifftshift(ifft(fftshift(Y)));
When you compare the analytical and computed answers, they now match.
The short answer to your question, given this, is that you are scaling y incorrectly at the end. You're scaling it by ts, which is 1e4, but you need to be scaling it by the sampling frequency which is Fs=1e3. That's why you end up off by a factor of 10.

Analytical Fourier transform vs FFT of functions in Matlab

I have adapted the code in Comparing FFT of Function to Analytical FT Solution in Matlab for this question. I am trying to do FFTs and comparing the result with analytical expressions in the Wikipedia tables.
My code is:
a = 1.223;
fs = 1e5; %sampling frequency
dt = 1/fs;
t = 0:dt:30-dt; %time vector
L = length(t); % no. sample points
t = t - 0.5*max(t); %center around t=0
y = ; % original function in time
Y = dt*fftshift(abs(fft(y))); %numerical soln
freq = (-L/2:L/2-1)*fs/L; %freq vector
w = 2*pi*freq; % angular freq
F = ; %analytical solution
figure; subplot(1,2,1); hold on
plot(w,real(Y),'.')
plot(w,real(F),'-')
xlabel('Frequency, w')
title('real')
legend('numerical','analytic')
xlim([-5,5])
subplot(1,2,2); hold on;
plot(w,imag(Y),'.')
plot(w,imag(F),'-')
xlabel('Frequency, w')
title('imag')
legend('numerical','analytic')
xlim([-5,5])
If I study the Gaussian function and let
y = exp(-a*t.^2); % original function in time
F = exp(-w.^2/(4*a))*sqrt(pi/a); %analytical solution
in the above code, looks like there is good agreement when the real and imaginary parts of the function are plotted:
But if I study a decaying exponential multiplied with a Heaviside function:
H = #(x)1*(x>0); % Heaviside function
y = exp(-a*t).*H(t);
F = 1./(a+1j*w); %analytical solution
then
Why is there a discrepancy? I suspect it's related to the line Y = but I'm not sure why or how.
Edit: I changed the ifftshift to fftshift in Y = dt*fftshift(abs(fft(y)));. Then I also removed the abs. The second graph now looks like:
What is the mathematical reason behind the 'mirrored' graph and how can I remove it?
The plots at the bottom of the question are not mirrored. If you plot those using lines instead of dots you'll see the numeric results have very high frequencies. The absolute component matches, but the phase doesn't. When this happens, it's almost certainly a case of a shift in the time domain.
And indeed, you define the time domain function with the origin in the middle. The FFT expects the origin to be at the first (leftmost) sample. This is what ifftshift is for:
Y = dt*fftshift(fft(ifftshift(y)));
ifftshift moves the origin to the first sample, in preparation for the fft call, and fftshift moves the origin of the result to the middle, for display.
Edit
Your t does not have a 0:
>> t(L/2+(-1:2))
ans =
-1.5000e-05 -5.0000e-06 5.0000e-06 1.5000e-05
The sample at t(floor(L/2)+1) needs to be 0. That is the sample that ifftshift moves to the leftmost sample. (I use floor there in case L is odd in size, not the case here.)
To generate a correct t do as follows:
fs = 1e5; % sampling frequency
L = 30 * fs;
t = -floor(L/2):floor((L-1)/2);
t = t / fs;
I first generate an integer t axis of the right length, with 0 at the correct location (t(floor(L/2)+1)==0). Then I convert that to seconds by dividing by the sampling frequency.
With this t, the Y as I suggest above, and the rest of your code as-is, I see this for the Gaussian example:
>> max(abs(F-Y))
ans = 4.5254e-16
For the other function I see larger differences, in the order of 6e-6. This is due to the inability to sample the Heaviside function. You need t=0 in your sampled function, but H doesn't have a value at 0. I noticed that the real component has an offset of similar magnitude, which is caused by the sample at t=0.
Typically, the sampled Heaviside function is set to 0.5 for t=0. If I do that, the offset is removed completely, and max difference for the real component is reduced by 3 orders of magnitude (largest errors happen for values very close to 0, where I see a zig-zag pattern). For the imaginary component, the max error is reduced to 3e-6, still quite large, and is maximal at high frequencies. I attribute these errors to the difference between the ideal and sampled Heaviside functions.
You should probably limit yourself to band-limited functions (or nearly-band-limited ones such as the Gaussian). You might want to try to replace the Heaviside function with an error function (integral of Gaussian) with a small sigma (sigma = 0.8 * fs is the smallest sigma I would consider for proper sampling). Its Fourier transform is known.

Determining time-dependent frequency using a sliding-window FFT

I have an instrument which produces roughly sinusoidal data, but with frequency varying slightly in time. I am using MATLAB to prototype some code to characterize the time dependence, but I'm running into some issues.
I am generating an idealized approximation of my data, I(t) = sin(2 pi f(t) t), with f(t) variable but currently tested as linear or quadratic. I then implement a sliding Hamming window (of width w) to generate a set of Fourier transforms F[I(t), t'] corresponding to the data points in I(t), and each F[I(t), t'] is fit with a Gaussian to more precisely determine the peak location.
My current MATLAB code is:
fs = 1000; %Sample frequency (Hz)
tlim = [0,1];
t = (tlim(1)/fs:1/fs:tlim(2)-1/fs)'; %Sample domain (t)
N = numel(t);
f = #(t) 100-30*(t-0.5).^2; %Frequency function (Hz)
I = sin(2*pi*f(t).*t); %Sample function
w = 201; %window width
ww=floor(w/2); %window half-width
for i=0:2:N-w
%Take the FFT of a portion of I, convolved with a Hamming window
II = 1/(fs*N)*abs(fft(I((1:w)+i).*hamming(w))).^2;
II = II(1:floor(numel(II)/2));
p = (0:fs/w:(fs/2-fs/w))';
%Find approximate FFT maximum
[~,maxIx] = max(II);
maxLoc = p(maxIx);
%Fit the resulting FFT with a Gaussian function
gauss = #(c,x) c(1)*exp(-(x-c(2)).^2/(2*c(3)^2));
op = optimset('Display','off');
mdl = lsqcurvefit(gauss,[max(II),maxLoc,10],p,II,[],[],op);
%Generate diagnostic plots
subplot(3,1,1);plot(p,II,p,gauss(mdl,p))
line(f(t(i+ww))*[1,1],ylim,'color','r');
subplot(3,1,2);plot(t,I);
line(t(1+i)*[1,1],ylim,'color','r');line(t(w+i)*[1,1],ylim,'color','r')
subplot(3,1,3);plot(t(i+ww),f(t(i+ww)),'b.',t(i+ww),mdl(2),'r.');
hold on
xlim([0,max(t)])
drawnow
end
hold off
My thought process is that the peak location in each F[I(t), t'] should be a close approximation of the frequency at the center of the window which was used to produce it. However, this does not seem to be the case, experimentally.
I have had some success using discrete Fourier analysis for engineering problems in the past, but I've only done coursework on continuous Fourier transforms--so there may be something obvious that I'm missing. Also, this is my first question on StackExchange, so constructive criticism is welcome.
So it turns out that my problem was a poor understanding of the mathematics of the sine function. I had assumed that the frequency of the wave was equal to whatever was multiplied by the time variable (e.g. the f in sin(ft)). However, it turns out that the frequency is actually defined by the derivative of the entire argument of the sine function--the rate of change of the phase.
For constant f the two definitions are equal, since d(ft)/dt = f. But for, say, f(t) = sin(t):
d(f(t)t)/dt = d(sin(t) t)/dt = t cos(t) + sin(t)
The frequency varies as a function very different from f(t). Changing the function definition to the following fixed my problem:
f = #(t) 100-30*(t-0.5).^2; %Frequency function (Hz)
G = cumsum(f(t))/fs; %Phase function (Hz)
I = sin(2*pi*G); %Sampling function

How does the sgolay function work in Matlab R2013a?

I have a question about the sgolay function in Matlab R2013a. My database has 165 spectra with 2884 variables and I would like to take the first and second derivatives of them. How might I define the inputs K and F to sgolay?
Below is an example:
sgolay is used to smooth a noisy sinusoid and compare the resulting first and second derivatives to the first and second derivatives computed using diff. Notice how using diff amplifies the noise and generates useless results.
K = 4; % Order of polynomial fit
F = 21; % Window length
[b,g] = sgolay(K,F); % Calculate S-G coefficients
dx = .2;
xLim = 200;
x = 0:dx:xLim-1;
y = 5*sin(0.4*pi*x)+randn(size(x)); % Sinusoid with noise
HalfWin = ((F+1)/2) -1;
for n = (F+1)/2:996-(F+1)/2,
% Zero-th derivative (smoothing only)
SG0(n) = dot(g(:,1), y(n - HalfWin: n + HalfWin));
% 1st differential
SG1(n) = dot(g(:,2), y(n - HalfWin: n + HalfWin));
% 2nd differential
SG2(n) = 2*dot(g(:,3)', y(n - HalfWin: n + HalfWin))';
end
SG1 = SG1/dx; % Turn differential into derivative
SG2 = SG2/(dx*dx); % and into 2nd derivative
% Scale the "diff" results
DiffD1 = (diff(y(1:length(SG0)+1)))/ dx;
DiffD2 = (diff(diff(y(1:length(SG0)+2)))) / (dx*dx);
subplot(3,1,1);
plot([y(1:length(SG0))', SG0'])
legend('Noisy Sinusoid','S-G Smoothed sinusoid')
subplot(3, 1, 2);
plot([DiffD1',SG1'])
legend('Diff-generated 1st-derivative', 'S-G Smoothed 1st-derivative')
subplot(3, 1, 3);
plot([DiffD2',SG2'])
legend('Diff-generated 2nd-derivative', 'S-G Smoothed 2nd-derivative')
Taking derivatives in an inherently noisy process. Thus, if you already have some noise in your data, indeed, it will be magnified as you take higher order derivatives. Savitzky-Golay is a very useful way of combining smoothing and differentiation into one operation. It's a general method and it computes derivatives to an arbitrary order. There are trade-offs, though. Other special methods exist for data with a certain structure.
In terms of your application, I don't have any concrete answers. Much depends on the nature of the data (sampling rate, noise ratio, etc.). If you use too much smoothing, you'll smear your data or produce aliasing. Same thing if you over-fit the data by using high order polynomial coefficients, K. In your demo code you should also plot the analytical derivatives of the sin function. Then play with different amounts of input noise and smoothing filters. Such a tool with known exact answers may be helpful if you can approximate aspects of your real data. In practice, I try to use as little smoothing as possible in order to produce derivatives that aren't too noisy. Often this means a third-order polynomial (K = 3) and a window size, F, as small as possible.
So yes, many suggest that you use your eyes to tune these parameters. However, there has also been some very recent research on choosing the coefficients automatically: On the Selection of Optimum Savitzky-Golay Filters (2013). There are also alternatives to Savitzky-Golay, e.g., this paper based on regularization, but you may need to implement them yourself in Matlab.
By the way, a while back I wrote a little replacement for sgolay. Like you, I only needed the second output, the differentiation filters, G, so that's all it calculates. This function is also faster (by about 2–4 times):
function G=sgolayfilt(k,f)
%SGOLAYFILT Savitzky-Golay differentiation filters
s = vander(0.5*(1-f):0.5*(f-1));
S = s(:,f:-1:f-k);
[~,R] = qr(S,0);
G = S/R/R';
A full version of this function with input validation is available on my GitHub.