Sending binary files over sockets - sockets

I want to send a binary file over from client to server using sockets.
This is my code for reading the file:
size_t buffer_size = 512;
std::fstream myfile;
myfile.open(filePath[i], std::ios::in | std::ios::out |
std::ios::binary);
std::vector<char> myBuffer(512);
std::ostream_iterator<char> osIt(std::cout);
//std::ifstream myfile(filePath[i]);
while (myfile)
{
myfile.read(&myBuffer.front(), buffer_size);
if (!myfile)
{
myBuffer.resize(myfile.gcount());
}
std::string msg(myBuffer.begin(), myBuffer.end());
doLog("sending message");
sout << locker << "\n " << msg.c_str() << unlocker;
q_.enQ(msg);
::Sleep(10 * id()); // sleep time increases with each
addition Sender
if (pSt->status() == "bad")
break;
}
I am using BLOCKING queue and also reading the file block by bloxk with each block size as 512.
This is my code for saving file at the server side:
msg = q_.deQ();
std::ofstream myStream;
myStream.open("../Test/Client1/Received_Files/darkKnight.jpeg",
std::ios::out | std::ios::app | std::ios::binary);
myStream << msg;
if (msg == "stop\n"){
myStream.close();
}
I am not able to open the output image that is created.

String is not a container for binary data. Just read and write bytes.
I wouldn't use the stream classes for this, or indeed anything above read(), write(), send(), and recv(), unless you have a proper sockets class library available.

Related

Interpreting keypresses sent to raspberry-pi through uv4l-webrtc datachannel

I apologize if this doesn't make sense since I'm still a newbie with using a raspberry pi and this is my first time posting on StackOverflow.
I am making a web app that lets me stream video to and from a raspberry pi while also letting me send keycodes. The sent keycodes would ultimately let me control servos on a drone. After scouring the internet, I figured that the simplest way to stream 2-way video is by using uv4l so I have it installed along with uv4l-webrtc on my raspberry pi. I hooked up some GPIO pins to a flight controller and I am using pigpio to send PWM signals to it, which I then monitor using CleanFlight.
Right now, I can manipulate with keypresses the roll, pitch, etc. of the flight controller using a python script if I access the pi remotely using VNC, but I would like to ultimately be able to do this through my custom web page that is being served by the uv4l-server. I am trying to use the WebRTC Data Channels, but I'm having some trouble understanding what I would need to do to recognize the messages sent through the data channels. I know that the data channels are opened when a video call is initiated and I've tried the test in this link to see if I can indeed send keycodes to the pi (and I can).
My problem right now is that I have no idea where those sent messages go or how I can get them so I can incorporate them into my python script. Would I need to make a server that would listen for the keycodes being sent to the pi?
tl;dr I have a python script on a raspberry pi to control servos on a flight controller using keypresses and a separate webpage that streams video using WebRTC, but I have no idea how to combine them together using WebRTC data channels.
Thanks to #adminkiam for the solution. Here's a version of the python script that now listens to the socket. It's essentially a variation of this code by the person who made pigpio:
import socket
import time
import pigpio
socket_path = '/tmp/uv4l.socket'
try:
os.unlink(socket_path)
except OSError:
if os.path.exists(socket_path):
raise
s = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET)
ROLL_PIN = 13
PITCH_PIN = 14
YAW_PIN = 15
MIN_PW = 1000
MID_PW = 1500
MAX_PW = 2000
NONE = 0
LEFT_ARROW = 1
RIGHT_ARROW = 2
UP_ARROW = 3
DOWN_ARROW = 4
LESS_BTN = 5
GREATER_BTN = 6
print 'socket_path: %s' % socket_path
s.bind(socket_path)
s.listen(1)
def getch(keyCode):
key = NONE
if keyCode == 188:
key = LESS_BTN
elif keyCode == 190:
key = GREATER_BTN
elif keyCode == 37:
key = LEFT_ARROW
elif keyCode == 39:
key = RIGHT_ARROW
elif keyCode == 38:
key = UP_ARROW
elif keyCode == 40:
key = DOWN_ARROW
return key
def cleanup():
pi.set_servo_pulsewidth(ROLL_PIN, 0)
pi.set_servo_pulsewidth(PITCH_PIN, 0)
pi.set_servo_pulsewidth(YAW_PIN, 0)
pi.stop()
while True:
print 'awaiting connection...'
connection, client_address = s.accept()
print 'client_address %s' % client_address
try:
print 'established connection with', client_address
pi = pigpio.pi()
rollPulsewidth = MID_PW
pitchPulsewidth = MID_PW
yawPulsewidth = MID_PW
pi.set_servo_pulsewidth(ROLL_PIN, rollPulsewidth)
pi.set_servo_pulsewidth(PITCH_PIN, pitchPulsewidth)
pi.set_servo_pulsewidth(YAW_PIN, yawPulsewidth)
while True:
data = connection.recv(16)
print 'received message"%s"' % data
time.sleep(0.01)
key = getch(int(data))
rollPW = rollPulsewidth
pitchPW = pitchPulsewidth
yawPW = yawPulsewidth
if key == UP_ARROW:
pitchPW = pitchPW + 10
if pitchPW > MAX_PW:
pitchPW = MAX_PW
elif key == DOWN_ARROW:
pitchPW = pitchPW - 10
if pitchPW < MIN_PW:
pitchPW = MIN_PW
elif key == LEFT_ARROW:
rollPW = rollPW - 10
if rollPW < MIN_PW:
rollPW = MIN_PW
elif key == RIGHT_ARROW:
rollPW = rollPW + 10
if rollPW > MAX_PW:
rollPW = MAX_PW
elif key == GREATER_BTN:
yawPW = yawPW + 10
if yawPW > MAX_PW:
yawPW = MAX_PW
elif key == LESS_BTN:
yawPW = yawPW - 10
if yawPW < MIN_PW:
yawPW = MIN_PW
if rollPW != rollPulsewidth:
rollPulsewidth = rollPW
pi.set_servo_pulsewidth(ROLL_PIN, rollPulsewidth)
if pitchPW != pitchPulsewidth:
pitchPulsewidth = pitchPW
pi.set_servo_pulsewidth(PITCH_PIN, pitchPulsewidth)
if yawPW != yawPulsewidth:
yawPulsewidth = yawPW
pi.set_servo_pulsewidth(YAW_PIN, yawPulsewidth)
if data:
print 'echo data to client'
connection.sendall(data)
else:
print 'no more data from', client_address
break
finally:
# Clean up the connection
cleanup()
connection.close()
When a WebRTC data channel is created between UV4L and the other WebRTC peer (i.e. a browser, Janus Gateway, etc...), UV4L creates a full-duplex Unix Domain Socket (/tmp/uv4l.socket by default) from/to which you can receive/send messages on the Raspberry Pi. Your python script should just open, listen and read to the socket for the incoming messages from the e.g. web application and/or write the messages to the same socket for the web app to receive them. An example doing this in C++ is under the link to the tutorial you pointed out in your question:
/*
Copyright (c) 2016 info#linux-projects.org
All rights reserved.
Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by the linux-projects.org. The name of the
linux-projects.org may not be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* This is a simple echo server.
* It creates to a unix domain socket of type SOCK_SEQPACKET specified by
* command line, listens to it waiting for incoming messages from clients
* (e.g. UV4L) and replies the received messages back to the senders.
*
* Example:
* $ ./datachannel_server /tmp/uv4l.socket
*
* To compile this program you need boost v1.60 or greater, for example:
* g++ -Wall -I/path/to/boost/include/ -std=c++11 datachannel_server.cpp -L/path/to/boost/lib -l:libboost_coroutine.a -l:libboost_context.a -l:libboost_system.a -l:libboost_thread.a -pthread -o datachannel_server
*/
#include <boost/asio/io_service.hpp>
#include <boost/asio/spawn.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio.hpp>
#include <memory>
#include <cstdio>
#include <array>
#include <functional>
#include <iostream>
#if !defined(BOOST_ASIO_HAS_LOCAL_SOCKETS)
#error Local sockets not available on this platform.
#endif
constexpr std::size_t MAX_PACKET_SIZE = 1024 * 16;
namespace seqpacket {
struct seqpacket_protocol {
int type() const {
return SOCK_SEQPACKET;
}
int protocol() const {
return 0;
}
int family() const {
return AF_UNIX;
}
using endpoint = boost::asio::local::basic_endpoint<seqpacket_protocol>;
using socket = boost::asio::generic::seq_packet_protocol::socket;
using acceptor = boost::asio::basic_socket_acceptor<seqpacket_protocol>;
#if !defined(BOOST_ASIO_NO_IOSTREAM)
/// The UNIX domain iostream type.
using iostream = boost::asio::basic_socket_iostream<seqpacket_protocol>;
#endif
};
}
using seqpacket::seqpacket_protocol;
struct session : public std::enable_shared_from_this<session> {
explicit session(seqpacket_protocol::socket socket) : socket_(std::move(socket)) {}
~session() {
//std::cerr << "session closed\n";
}
void echo(boost::asio::yield_context yield) {
auto self = shared_from_this();
try {
for (;;) {
seqpacket_protocol::socket::message_flags in_flags = MSG_WAITALL, out_flags = MSG_WAITALL;
// Wait for the message from the client
auto bytes_transferred = socket_.async_receive(boost::asio::buffer(data_), in_flags, yield);
// Write the same message back to the client
socket_.async_send(boost::asio::buffer(data_, bytes_transferred), out_flags, yield);
}
} catch (const std::exception& e) {
std::cerr << e.what() << '\n';
socket_.close();
}
}
void go() {
boost::asio::spawn(socket_.get_io_service(), std::bind(&session::echo, this, std::placeholders::_1));
}
private:
seqpacket_protocol::socket socket_;
std::array<char, MAX_PACKET_SIZE> data_;
};
int main(int argc, char* argv[]) {
try {
if (argc != 2) {
std::cerr << "Usage: datachannel_server <file> (e.g. /tmp/uv4l.socket)\n";
std::cerr << "*** WARNING: existing file is removed ***\n";
return EXIT_FAILURE;
}
boost::asio::io_service io_service;
std::remove(argv[1]);
boost::asio::spawn(io_service, [&](boost::asio::yield_context yield) {
seqpacket_protocol::acceptor acceptor_(io_service, seqpacket_protocol::endpoint(argv[1]));
for (;;) {
boost::system::error_code ec;
seqpacket_protocol::socket socket_(io_service);
acceptor_.async_accept(socket_, yield[ec]);
if (!ec)
std::make_shared<session>(std::move(socket_))->go();
}
});
io_service.run();
} catch (std::exception& e) {
std::cerr << "Exception: " << e.what() << "\n";
return EXIT_FAILURE;
}
}

Implementation of Poll Mechanism in Char Device Driver

Hello Dear participants of stackoverflow,
I'm new to kernel space development and still in the beginning of the road.
I developed a basic char device driver that can read open close etc . But couldn't find a proper source and how to tutorial for Poll/select mechanism sample.
I've written the sample code for poll function below:
static unsigned int dev_poll(struct file * file, poll_table *wait)
{
poll_wait(file,&dev_wait,wait);
if (size_of_message > 0 ){
printk(KERN_INFO "size_of_message > 0 returning POLLIN | POLLRDNORM\n");
return POLLIN | POLLRDNORM;
}
else {
printk(KERN_INFO "dev_poll return 0\n");
return 0;
}
}
It works fine but couldn't undestand a few things.
When I call select from user space program as
struct timeval time = {5,0 } ;
select(fd + 1 , &readfs,NULL,NULL,&time);
the dev_poll function in driver called once and return zero or POLLIN in order to buffer size . And then never called again. In user space , after 5 seconds the program continue if dev_poll returned 0.
What I couldn't understand is here , How the driver code will decide and let user space program if there is something in buffer that is readable withing this 5 seconds , if it's called once and returned immediately.
Is there anyway in kernel module to gather information of timeval parameter that comes from userspace ?
Thank you from now on.
Regards,
Call poll_wait() actually places some wait object into a waitqueue, specified as a second parameter. When wait object is fired (via waitqueue's wake_up or similar function), the poll function is evaluated again.
Kernel driver needn't to bother about timeouts: when time is out, the wait object will be removed from the waitqueue automatically.
Hello dear curious people like me about poll . I came up with a solution.
From another topic on stackowerflow a guy said that the poll_function is called multiple times if kernel need to last situation. So basically I implement that code .
when poll called call wait_poll(wait_queue_head);
when device have buffered data(this is usually in driver write function).
call wake_up macro with wait_queue_head paramater.
So after this step poll function of driver is called again .
So here you can return whatever you want to return. In this case POLLIN | POLLRDNORM..
Here is my sample code for write and poll in the driver.
static unsigned int dev_poll(struct file * file, poll_table *wait)
{
static int dev_poll_called_count = 0 ;
dev_poll_called_count ++;
poll_wait(file,&dev_wait,wait);
read_wait_queue_length++;
printk(KERN_INFO "Inside dev_poll called time is : %d read_wait_queue_length %d\n",dev_poll_called_count,read_wait_queue_length);
printk(KERN_INFO "After poll_wait wake_up called\n");
if (size_of_message > 0 ){
printk(KERN_INFO "size_of_message > 0 returning POLLIN | POLLRDNORM\n");
return POLLIN | POLLRDNORM;
}
else {
printk(KERN_INFO "dev_poll return 0\n");
return 0;
}
}
static ssize_t dev_write(struct file *filep, const char *buffer, size_t len, loff_t *offset){
printk(KERN_INFO "Inside write \n");;
int ret;
ret = copy_from_user(message, buffer, len);
size_of_message = len ;
printk(KERN_INFO "EBBChar: Received %zu characters from the user\n", size_of_message);
if (ret)
return -EFAULT;
message[len] = '\0';
printk(KERN_INFO "gelen string %s", message);
if (read_wait_queue_length)
{
wake_up(&dev_wait);
read_wait_queue_length = 0;
}
return len;
}

Flexible socket application

I'm writing a game wich playing on LAN with socket. I use 4 bytes length prefix to know how many data in the rest like this:
void trust_recv(int sock, int length, char *buffer)
{
int recved = 0;
int justRecv;
while(recved < length) {
justRecv = recv(sock, buffer + recved, length - recved, 0);
if (justRecv < 0) return;
recved += justRecv;
}
}
void onDataArrival(int sock)
{
int length;
char *data;
trust_recv(sock, 4, (char *) &length);
data = new char[length];
trust_recv(sock, length, data);
do_somethings_with_data(data);
}
The problem is if someone (an intruder or hacker for example) sends data with other format (maybe only 2 bytes or the length of the rest lower than 4 bytes prefix value) or an network problem, my application will be go to "not responding" state and have to close (because I use blocking socket). How to make my socket application more flexible but don't swith socket to non-blocking mode to pass this issue? (Or any ideas for organize data or algorithms as well)
You can set a receive timeout, during the socket setup phase, with setsockopt() call and SO_RCVTIMEO parameter;
struct timeval tv;
tv.tv_sec =8;
tv.tv_usec = 0 ;
if (setsockopt (your_sock_fd, SOL_SOCKET, SO_RCVTIMEO, (char *)&tv, sizeof tv)
perror(“setsockopt error”);
then test the return of recv() and his errno
if (justRecv < 0)
{
if (errno == EAGAIN)
perror("TIMEOUT!");
return;
}

mq_receive: message too long

I am implementing a communication between 2 processes using a queue. The problem is that when I call the function mq_receive, I get this error: Message too long.
I have done the following:
struct mq_attr attr;
long size = attr.mq_msgsize;
.... // initializing the queue "/gateway"
int rc = mq_receive(gateway, buffer, size, &prio);
If I print the size value, I get size=1, while when I print the same size but from another program (got by the same mechanism), I get something not long integer ( -1217186280 )...
How can I solve this error?....so while size = 1, I believe it's right to say "message too long" but why is 1?
P.S. I have also tried to put :
int rc = mq_receive(gateway, buffer, sizeof(buffer), &prio);
but with no result.
It seems like you need to read the docs more carefully. When you call mq_receive you should pass size of the destination buffer. This size must be greater than the mq_msgsize attribute of the queue. In addition, it seems like you have an error in queue attributes initialisation that makes proper mq_receive call impossible. Here is standard message queue session:
Fill mq_attr struct (doc):
struct mq_attr attr;
attr.mq_flags = 0;
attr.mq_maxmsg = 10;
attr.mq_msgsize = 33;
attr.mq_curmsgs = 0;
Create queue with mq_open in master process (doc):
mqd_t queue = mq_open(qname, O_CREAT|O_RDWR, 0644, &attr);
In writer process open queue for writing:
mqd_t queue = mq_open(qname, O_WRONLY);
And send some text. Length of the text must be lesser than mq_msgsize attribute of the queue (doc):
mq_send(queue, "some message", strlen("some message")+1, 1);
In reader process open queue for reading:
mqd_t queue = mq_open(qname, O_RDONLY);
And then allocate buffer and receive message. Size of buffer *must be greater than the mq_msgsize attribute of the queue. Here we create 50-byte buffer while mq_msgsize == 33 (doc):
char rcvmsg[50];
int iret = mq_receive(queue, rcvmsg, 50, NULL);
Also remember that you should use %ld for print long instead of %d.
When debugging realtime POSIX queues, you should start with a sample program which works and go forward from there. Once you have the sample program running, it should be a simple matter of ensuring that your own code follows all the steps.
The following program has been tested successfully under Ubuntu 11.04:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <mqueue.h>
#define MQNAME "/pax"
#define MQMESG "Hello there!"
static mqd_t serverUp (void) {
int rc;
mqd_t svrHndl;
struct mq_attr mqAttr;
printf ("Bringing up server.\n");
rc = mq_unlink (MQNAME);
if (rc < 0) {
printf (" Warning %d (%s) on server mq_unlink.\n",
errno, strerror (errno));
}
mqAttr.mq_maxmsg = 10;
mqAttr.mq_msgsize = 1024;
svrHndl = mq_open (MQNAME, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR, &mqAttr);
if (svrHndl < 0) {
printf (" Error %d (%s) on server mq_open.\n",
errno, strerror (errno));
exit (1);
}
printf (" Server opened mqd_t of %d.\n", svrHndl);
return svrHndl;
}
static void serverReceive (mqd_t svrHndl) {
int rc;
char buffer[2048];
printf ("Server receiving on mqd_t %d.\n", svrHndl);
rc = mq_receive (svrHndl, buffer, sizeof (buffer), NULL);
if (rc < 0) {
printf (" Error %d (%s) on server mq_receive.\n",
errno, strerror (errno));
exit (1);
}
printf (" Received [%s].\n", buffer);
}
static void serverDown (mqd_t svrHndl) {
printf ("Bringing down server with mqd_t %d.\n", svrHndl);
mq_close (svrHndl);
}
static void clientSend (void) {
mqd_t cliHndl;
int rc;
printf ("Client sending.\n");
cliHndl = mq_open (MQNAME, O_RDWR);
if (cliHndl < 0) {
printf (" Error %d (%s) on client mq_open.\n",
errno, strerror (errno));
exit (1);
}
printf (" Client opened mqd_t of %d.\n", cliHndl);
rc = mq_send (cliHndl, MQMESG, sizeof (MQMESG), 1);
if (rc < 0) {
printf (" Error %d (%s) on client mq_send.\n",
errno, strerror (errno));
exit (1);
}
mq_close (cliHndl);
}
int main (void) {
mqd_t svrHndl;
svrHndl = serverUp ();
clientSend ();
serverReceive (svrHndl);
serverDown (svrHndl);
return 0;
}
The output on my system is:
Bringing up server.
Server opened mqd_t of 3.
Client sending.
Client opened mqd_t of 4.
Server receiving on mqd_t 3.
Received [Hello there!].
Bringing down server with mqd_t 3.
Don't forget to unlink the message queue before running your program again. If you dont unlink it, it will still use the old message queue settings. This happens when you end your program with Ctrl+C. I think it is a good idea to put the following code at the beginning of the program:
if(mq_unlink(QUEUENAME) == 0)
fprintf(stdout, "Message queue %s removed from system.\n", QUEUENAME);
An alternative form (C++ style) that checks for real errors (like permissions) and ignores the cases where the queue already exists or not:
int rc = mq_unlink(name.c_str());
if (rc != 0 && errno != ENOENT)
THROW_ERRNO_EXCEPTION();
// ENOENT is the status code if the queue doesn't exist, which is not an error
// if you are immediately going to create it.
Just a correction above...
"This size must be equal or greater than the mq_msgsize attribute of the queue"
Equal size is probably required if you are passing a struct instead of a buffer:
see: send struct in mq_send

collect packet length in pcap file

hi guys how can i collect the packet length for each packet in the pcap file? thanks a lot
I suggest a high-tech method, which very few people know: reading the documentation.
man pcap tells us there are actually two different lengths available:
caplen a bpf_u_int32 giving the number of bytes of the packet that are
available from the capture
len a bpf_u_int32 giving the length of the packet, in bytes (which
might be more than the number of bytes available from the cap-
ture, if the length of the packet is larger than the maximum num-
ber of bytes to capture)
An example in C:
/* Grab a packet */
packet = pcap_next(handle, &header);
if (packet == NULL) { /* End of file */
break;
}
printf ("Got a packet with length of [%d] \n",
header.len);
Another one in Python with the pcapy library:
import pcapy
reader = pcapy.open_offline("packets.pcap")
while True:
try:
(header, payload) = reader.next()
print "Got a packet of length %d" % header.getlen()
except pcapy.PcapError:
break
Those two examples below work fine:
using C, WinPcap
using python, SCAPY
(WinPcap)(Compiler CL , Microsoft VC)
I have wrote this function (in C) to get packet size and it works fine.
Don't forget to include pcap.h and set HAVE_REMOTE in compiler preprocessors
u_int getpkt_size(char * pcapfile){
pcap_t *indesc;
char errbuf[PCAP_ERRBUF_SIZE];
char source[PCAP_BUF_SIZE];
u_int res;
struct pcap_pkthdr *pktheader;
u_char *pktdata;
u_int pktsize=0;
/* Create the source string according to the new WinPcap syntax */
if ( pcap_createsrcstr( source, // variable that will keep the source string
PCAP_SRC_FILE, // we want to open a file
NULL, // remote host
NULL, // port on the remote host
pcapfile, // name of the file we want to open
errbuf // error buffer
) != 0)
{
fprintf(stderr,"\nError creating a source string\n");
return 0;
}
/* Open the capture file */
if ( (indesc= pcap_open(source, 65536, PCAP_OPENFLAG_PROMISCUOUS, 1000, NULL, errbuf) ) == NULL)
{
fprintf(stderr,"\nUnable to open the file %s.\n", source);
return 0;
}
/* get the first packet*/
res=pcap_next_ex( indesc, &pktheader, &pktdata);
if (res !=1){
printf("\nError Reading PCAP File");
return 0;
}
/* Get the packet size*/
pktsize=pktheader->len;
/* Close the input file */
pcap_close(indesc);
return pktsize;
}
Another wroking Example in Python using the wonderful SCAPY
from scapy.all import *
pkts=rdpcap("data.pcap",1) # reading only 1 packet from the file
OnePkt=pkts[0]
print len(OnePkt) # prints the length of the packet