MongoDB and composite primary keys - mongodb

I'm trying to determine the best way to deal with a composite primary key in a mongo db. The main key for interacting with the data in this system is made up of 2 uuids. The combination of uuids is guaranteed to be unique, but neither of the individual uuids is.
I see a couple of ways of managing this:
Use an object for the primary key that is made up of 2 values (as suggested here)
Use a standard auto-generated mongo object id as the primary key, store my key in two separate fields, and then create a composite index on those two fields
Make the primary key a hash of the 2 uuids
Some other awesome solution that I currently am unaware of
What are the performance implications of these approaches?
For option 1, I'm worried about the insert performance due to having non sequential keys. I know this can kill traditional RDBMS systems and I've seen indications that this could be true in MongoDB as well.
For option 2, it seems a little odd to have a primary key that would never be used by the system. Also, it seems that query performance might not be as good as in option 1. In a traditional RDBMS a clustered index gives the best query results. How relevant is this in MongoDB?
For option 3, this would create one single id field, but again it wouldn't be sequential when inserting. Are there any other pros/cons to this approach?
For option 4, well... what is option 4?
Also, there's some discussion of possibly using CouchDB instead of MongoDB at some point in the future. Would using CouchDB suggest a different solution?
MORE INFO: some background about the problem can be found here

You should go with option 1.
The main reason is that you say you are worried about performance - using the _id index which is always there and already unique will allow you to save having to maintain a second unique index.
For option 1, I'm worried about the insert performance do to having
non sequential keys. I know this can kill traditional RDBMS systems
and I've seen indications that this could be true in MongoDB as well.
Your other options do not avoid this problem, they just shift it from the _id index to the secondary unique index - but now you have two indexes, once that's right-balanced and the other one that's random access.
There is only one reason to question option 1 and that is if you plan to access the documents by just one or just the other UUID value. As long as you are always providing both values and (this part is very important) you always order them the same way in all your queries, then the _id index will be efficiently serving its full purpose.
As an elaboration on why you have to make sure you always order the two UUID values the same way, when comparing subdocuments { a:1, b:2 } is not equal to { b:2, a:1 } - you could have a collection where two documents had those values for _id. So if you store _id with field a first, then you must always keep that order in all of your documents and queries.
The other caution is that index on _id:1 will be usable for query:
db.collection.find({_id:{a:1,b:2}})
but it will not be usable for query
db.collection.find({"_id.a":1, "_id.b":2})

I have an option 4 for you:
Use the automatic _id field and add 2 single field indexes for both uuid's instead of a single composite index.
The _id index would be sequential (although that's less important in MongoDB), easily shardable, and you can let MongoDB manage it.
The 2 uuid indexes let you to make any kind of query you need (with the first one, with the second or with both in any order) and they take up less space than 1 compound index.
In case you use both indexes (and other ones as well) in the same query MongoDB will intersect them (new in v2.6) as if you were using a compound index.

I'd go for the 2 option and there is why
Having two separate fields instead of the one concatenated from both uuids as suggested in 1st, will leave you the flexibility to create other combinations of indexes to support the future query requests or if turns out, that the cardinality of one key is higher then another.
having non sequential keys could help you to avoid the hotspots while inserting in sharded environment, so its not such a bad option. Sharding is the best way, for my opinion, to scale inserts and updates on the collections, since the write locking is on database level (prior to 2.6) or collection level (2.6 version)

I would've gone with option 2. You can still make an index that handles both the UUID fields, and performance should be the same as a compound primary key, except it'll be much easier to work with.
Also, in my experience, I've never regretted giving something a unique ID, even if it wasn't strictly required. Perhaps that's an unpopular opinion though.

Related

Uniqueness of _id within a shard

I'm looking into sharding using mongodb, and most if it is rather straight forward. I have some experience with sharding in other databases, so I'm not asking about the concept itself. There's one thing I'm confused by, and there doesn't seem to be anything in the documentation about this, so here goes.
Is _id required to be unique within the shard, regardless of shard key?
A small scale (single shard) test seems to confirm that this is the case. It does however seem like a less than stellar approach to sharding, which has me confused. To me it would make more sense to require shard-key + _id to be unique (i.e. use a compound key), or you'll have inconsistent behavior depending on where your shard-keys end up being routed to. My data model uses deterministic keys, and the shard key is an intrinsic part of it. So I guess it comes down to, did I do something wrong in my small scale test? Do I need to store the shard-key twice, once as a shard-key field and once as part of _id? Or is there some special case where I can somehow declare a compound key using shard-key and _id?
Update
For completeness, this is the trivial case I'm testing, inserting the following two documents:
{"_id": 1, "shardkey": 1}
{"_id": 1, "shardkey": 2}
First one obviously goes through, second one fails. If I would've had two shards, and the shard keys would've been routed to different shards, I assume both would've succeeded.
I can obviously just combine the shard-key and the id to create the _id field for mongodb, since this is really the key I'm using, but it seems like a weird way to approach the problem from a database architectural standpoint.
_id needs to be unique, always, whether the collection is sharded or not. The shard key does not need to be unique. It is used to split the collection into chunks which can be split onto the shards making up the database. The shard key needs to provide enough granularity to split the documents in the collection into chunks. Its obviously a good idea to link the shard key to how you query the data, and use a shard key which relates to the fields that you query on. This way the queries you run will be easily directed to the relevant shards to satisfy the query. If the shard key isnt selective enough then the query will need to go to multiple shards to find the correct documents. You can create a compound index on _id + shard-key and make it unique if you want.
I realise this doesnt fully answer the question. tbh I am struggling to understand what you're asking. Perhaps if you could post an example of the documents you're storing and the queries you're running it would help.

MongoDB - Compound Secondary Index vs Concatenated _id Index

I am designing my database with MongoDb thinking in the scalability in the future. My main concern right now is about representing the indexes, as I have read, it is a crucial factor while scaling huge collections, in terms of RAM consumption, and sharding efficiency.
For simplicity, I have two different collections. A user collection which stores the user username, email, and some metadata, and a devices collection, that contains a device name, some metadata, and should be related with its owner. One user can have millions of devices (so it is not worth to store all in a single user document).
The devices collection should support queries in term of the whole device identifier by (username, device_name), or also by the username.
In this case I see some different approaches for storing the indexes:
Use a secondary compound index with username and device_name (in this order)
Use a primary index with and _id containing an string with username#device_name
Use an object in the _id field with both values {owner:username, device:device_name}
For testing this indexes, I have done some server load. I have created three different collections with this different alternatives and filled 5M documents. Some data:
I do not use the automatically generated _id created by mongo, as all my queries requires username/device. So this approach takes some extra space for indexing. The index size is 524MB. It is efficient while querying both by user or by user/device.
As I am replacing the _id with my own string, the index takes less space. In this case 352MB. I am still able to query efficiently by user (with a regex like /^username#/ the explain() reports almost the same results like in 1 in), and by the exact username/device.
The _id index cannot be changed to a compound index, so it is required to create a secondary compound index with {_id.owner, _id.device}. This results in a huge index size of 1059MB!. Queries goes well as in previous cases.
So, I can discard alternative 3, as this is not so much efficient. Between alternative 1 and 2, I prefer 1 as this approach is more clean, but it uses a _id field I will not use. So at this moment, the winning approach seems to be the number 2, as it allows me query efficiently by username or username/device, and it also takes less index space.
Is there a good reason to not use number 2 and follow with number 1, like when selecting the sharding key? Is there something I am missing? I am new with mongoDB and do not want to have problems when scaling my schema.

Generating shard key field for multi tenant mongodb app

I'm working on a multi-tenant application running on mongodb. Each tenant can create multiple applications. The schema for most of the collections reference other collections via ObjectIDs. I'm thinking of manually creating a shard key with every record insertion in the following format:
(v3 murmurhash of the record's ObjectId) + (app_id.toHexString())
Is this good enough to ensure that records for any particular application will likely end up on the same shard?
Also, what happens if a particular application grows super large compared to all others on the shard?
If you use a hash based shard key with the input constantly changing (ObjectID can generally be considered to be unique for each record), then you will get no locality of data on shards at all (except by coincidence), though it will give you great write throughput by randomly distributing writes across all shards. That's basically the trade off with this kind of approach, the same is true of the built in hash based sharding, those trade offs don't change just because it is a manual hash constructed of two fields.
Basically because MongoDB uses range based chunks to split up the data for a given shard key you will have sequential ranges of hashes used as chunks in this case. Assuming your hash is not buggy in some way, then the data in a single sequential range will basically be random. Hence, even within a single chunk you will have no data locality, let alone on a shard, it will be completely random (by design).
If you wanted to be able to have applications grouped together in ranges, and hence more likely to be on a particular shard then you would be better off to pre-pend the app_id to make it the leftmost field in a compound shard key. Something like sharding on the following would (based on the limited description) be a good start:
{app_id : 1, _id : 1}
Though the ObjectID is monotonically increasing (more discussion on that here) over time, if there are a decent number of application IDs and you are going to be doing any range based or targeted queries on the ObjectID, then it might still work well though. You may also want to have other fields included based on your query pattern.
Remember that whatever your most common query pattern is, you want to have the shard key (ideally) satisfy it if at all possible. It has to be indexed, it has be used by the mongos to decide to route the query (if not, then it is scatter/gather), so if you are going to constantly query on app_id and _id then the above shard key makes a lot of sense.
If you go with the manual hashed key approach not only will you have a random distribution, but unless you are going to be querying on that hash it's not going to be very useful.

mongodb indexing user-defined schemas

We are currently using MongoDB to allow tenants in a SaaS application to define entities that they can use in the application. We do not know know how each tenant is going to define the fields for the entities that they are creating upfront. Each entity will have a collection dynamically created for it in a separate database that belongs to the tenant.
For example, One tenant might define a Customer as First Name, Last Name, Email. Another tenant might define Shipment as Shipment Ref, Ship Date, Owner etc... Each tenant will have many entities/collections in their tenant database.
We have one field (ID) which we will always force the user to include in each entity/collection. We will index this field upfront when creating the collection.
However, how do we handle the case where we want to allow the tenant to sort/search/order/query large collections/entities quickly when/if the dataset becomes too large?
That is, since we do not know upfront what fields the user will be sorting/filtering/ordering by, what is the indexing strategy to use in this case with Mongo?
First of all Mongo requires you to have _id for each document and it indexes it automatically. You should take advantage of this and not create yet another ID field in case you require your clients to have ID field. I'm not sure if that's the case in your application.
What you are asking for can't have a perfect solution or even the most optimal one, but I can suggest couple options:
Create single field index for each field in the document. Let Mongo query optimizer decide which index to use depending on query. Disadvantages - takes lots of space on disk and in memory. Makes inserts slower. Mongo can use only 1 index in condition clause, so it will not be able to use compound index. You can easily extract schema with a tool like this. I wrote this little prototype that analyzes and prints Mongo schema.
Let your application learn what indexes to create. Get slow queries from Mongo profiler (in Mongo log), analyze common parts (automatically?) and create indexes on most commonly used fields. That's not so easy to implement and efficiency might change with time if your client changes queries or data. Application will be slow in the start until it learns about itself :).
Would just like to emphasize in choosing your design that the ID and not _id field you mention is actually some unique entity identifier then you are better of putting this in _id.
The reason here is that the performance trade-off for using another unique index over the required _id is a considerable overhead. Thinking about this, since _id is required it is the first thing that MongoDB looks for when determining which index to use. Otherwise consider a compound _id field containing your entity information and some other useful uniqueness.
As for the user defined fields, which is kind of the essence of mongo documents, for my money I would make it part of the API to set up indexes as required. Depending on the type of searching that is happening you'll probably want compound indexes and generated queries that make sense to these.
Simply indexing every field will probably have limited use as only one index is going to be picked for the find anyhow, and the query optimizer is going to try all of them. As has been mentioned, a long option could be to set indexes according to the usage patterns. But it could take some work to do.

Choosing the right shard key in MongoDB

We are building our first MongoDB and currently we are trying to choose the right shard key.
Each document in our main collection contain around 40 voice call related fields and the main field that we use in queries is the UserId field. This is why we are thinking about compound shard key of userid and CallStartTime.
They are not sure regarding the second field since StartTime is always advancing and one might argue that it is not random enough. This led us to consider replace it with UserId and hashed _id (mongo internal id after hash).
Is the first option is ok or do we better use the latter?
Consider the recommendations in the documentation here: http://docs.mongodb.org/manual/core/sharded-cluster-internals/#shard-keys
Or, if there is no natural choice, consider using a hashed shard key (mongodb 2.4+)
http://docs.mongodb.org/manual/reference/glossary/#term-hashed-shard-key
What sort of queries are you performing? What are the access patterns.
Ideally you want a key with good cardinality, write scaling and query isolation.
In your examples above you would need to know the callstarttime or hash to avoid scatter-gather operations.