I have a basic exercise for telecommunications with matlab, and i must plot a triangle pulse with (-c,0) to (c,0) with c = 6 and Amplitude = 1 in a for loop for M pulses and approach the periodic pulse using N Fourier series terms. I can't find something on the internet that can help me so far.
A similar code for rect pulse that I made and works is this:
a = 1;
b = 3;
N = 1000;
t = linspace(a-2*a,b+2*b,N);
A = 1;
y = rect_pulse(A,a,b,t);
plot(t,y);
grid on
axis([a-2*a b+2*b 0 2*A]);
M = 5;
T=7;
t_new = linspace(a-2*a,b+(M-1)*T+2*b,N);
y_new = zeros(1,N);
for index = 1:1:M
temp_y = rect_pulse(A,a+(index-1)*T,b+(index-1)*T,t_new);
y_new = y_new + temp_y;
end
figure;
plot(t_new,y_new);
grid on;
axis([a-2*a b+(M-1)*T+2*b 0 2*A]);
Where rect_pulse is this:
function y = rect_pulse (A,a,b,t)
N=length(t);
y = zeros(1,N);
for index = 1:1:N
if(t(1,index)>=a) && (t(1,index)<=b)
y(1,index) = A;
end
end
And fourier series is this:
function y_fourier = fourier_series_rect_pulse(a,b,To,N,t)
y_fourier = 0;
wo = (2*pi)/To;
for n = -N:1:N
f_real = #(x) cos(n*wo*x);
f_imag = #(x) sin(n*wo*x);
cn = (1/To)*(quad(f_real,a,b)) - j*quad(f_imag,a,b));
y_fourier = y_fourier + cn*exp(j*n*wo*t);
end
y_fourier = real(y_fourier);
Any ideas how to make this in to triangle pulse?
This probably deviates significantly from your approach but if you're curious here is a script I came up with to generate a triangular pulse train that can be adjusted. This method, unfortunately, uses the fft() function which may or may not be off-limits in your case. Most of the script uses indexing and manipulating vectors. Additional spectral components may be seen due to the DC offset of the alternating triangular wave and the limited number of cycles available in the vector representation of the triangular wave.
Triangular Pulses and Fourier Transforms:
Triangular Pulse with Duty-Off Period:
Higher frequency spectral components present due to the abrupt corners that occur at the transition states of the triangle pulse and duty-off period.
%******************************************************%
%PROPERTIES THAT CAN BE CHANGED%
%******************************************************%
Plotting_Interval = 0.01; %0.01 seconds%
Pulse_Width = 1/20; %6 seconds%
Period = 1/20; %10 seconds (should be at least the pulse width)%
Start_Time = 0;
End_Time = Pulse_Width*1000; %(1000 pulses)%
%******************************************************%
if(Period < Pulse_Width)
Period = Pulse_Width;
end
Time_Vector = (Start_Time: Plotting_Interval: End_Time);
Points_Per_Unit_Time = 1/Plotting_Interval;
Half_Pulse = Pulse_Width/2;
Number_Of_Points = Pulse_Width/Plotting_Interval;
Rising_Slope = linspace(0,1,floor(Number_Of_Points/2) + 1);
Falling_Slope = 1 - Rising_Slope;
Triangular_Pulse = [Rising_Slope Falling_Slope(2:end)];
t = (0: Plotting_Interval: Pulse_Width);
Periodic_Triangular_Pulse = zeros(1,length(Time_Vector));
for Cycle = 1: +Period/Plotting_Interval: End_Time/Plotting_Interval
Periodic_Triangular_Pulse(1,Cycle:Cycle+length(Triangular_Pulse)-1) = Triangular_Pulse(1,1:end);
end
Periodic_Triangular_Pulse = Periodic_Triangular_Pulse(1,1:length(Time_Vector));
subplot(1,2,1); plot(Time_Vector,Periodic_Triangular_Pulse);
Triangle_Frequency = 1/Period;
title("Triangular Pulse Train " + num2str(Triangle_Frequency) + "Hz (first 10 cycles)");
axis([0 Period*10 0 1]);
xlabel("Time (s)"); ylabel("Amplitude");
Signal_Length = length(Periodic_Triangular_Pulse);
Fourier_Transform = fft(Periodic_Triangular_Pulse);
Fs = 1/Plotting_Interval;
P2 = abs(Fourier_Transform/Signal_Length);
P1 = P2(1:floor(Signal_Length/2)+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(Signal_Length/2))/Signal_Length;
subplot(1,2,2); plot(f,P1)
title("Single-Sided Fourier Transform");
xlabel("Frequency (Hz)"); ylabel("Magnitude");
Ran using MATLAB R2019b
I'm writing the code in Matlab to find interest point using DoG in the image.
Here is the main.m:
imTest1 = rgb2gray(imread('1.jpg'));
imTest1 = double(imTest1);
sigma = 0.6;
k = 5;
thresh = 3;
[x1,y1,r1] = DoG(k,sigma,thresh,imTest1);
%get the interest points and show it on the image with its scale
figure(1);
imshow(imTest1,[]), hold on, scatter(y1,x1,r1,'r');
And the function DoG is:
function [x,y,r] = DoG(k,sigma,thresh,imTest)
x = []; y = []; r = [];
%suppose 5 levels of gaussian blur
for i = 1:k
g{i} = fspecial('gaussian',size(imTest),i*sigma);
end
%so 4 levels of DoG
for i = 1:k-1
d{i} = imfilter(imTest,g{i+1}-g{i});
end
%compare the current pixel in the image to the surrounding pixels (26 points),if it is the maxima/minima, this pixel will be a interest point
for i = 2:k-2
for m = 2:size(imTest,1)-1
for n = 2:size(imTest,2)-1
id = 1;
compare = zeros(1,27);
for ii = i-1:i+1
for mm = m-1:m+1
for nn = n-1:n+1
compare(id) = d{ii}(mm,nn);
id = id+1;
end
end
end
compare_max = max(compare);
compare_min = min(compare);
if (compare_max == d{i}(m,n) || compare_min == d{i}(m,n))
if (compare_min < -thresh || compare_max > thresh)
x = [x;m];
y = [y;n];
r = [r;abs(d{i}(m,n))];
end
end
end
end
end
end
So there's a gaussian function and the sigma i set is 0.6. After running the code, I find the position is not correct and the scales looks almost the same for all interest points. I think my code should work but actually the result is not. Anybody know what's the problem?
I am trying to implement a simple pixel level center-surround image enhancement. Center-surround technique makes use of statistics between the center pixel of the window and the surrounding neighborhood as a means to decide what enhancement needs to be done. In the code given below I have compared the center pixel with average of the surrounding information and based on that I switch between two cases to enhance the contrast. The code that I have written is as follows:
im = normalize8(im,1); %to set the range of pixel from 0-255
s1 = floor(K1/2); %K1 is the size of the window for surround
M = 1000; %is a constant value
out1 = padarray(im,[s1,s1],'symmetric');
out1 = CE(out1,s1,M);
out = (out1(s1+1:end-s1,s1+1:end-s1));
out = normalize8(out,0); %to set the range of pixel from 0-1
function [out] = CE(out,s,M)
B = 255;
out1 = out;
for i = s+1 : size(out,1) - s
for j = s+1 : size(out,2) - s
temp = out(i-s:i+s,j-s:j+s);
Yij = out1(i,j);
Sij = (1/(2*s+1)^2)*sum(sum(temp));
if (Yij>=Sij)
Aij = A(Yij-Sij,M);
out1(i,j) = ((B + Aij)*Yij)/(Aij+Yij);
else
Aij = A(Sij-Yij,M);
out1(i,j) = (Aij*Yij)/(Aij+B-Yij);
end
end
end
out = out1;
function [Ax] = A(x,M)
if x == 0
Ax = M;
else
Ax = M/x;
end
The code does the following things:
1) Normalize the image to 0-255 range and pad it with additional elements to perform windowing operation.
2) Calls the function CE.
3) In the function CE obtain the windowed image(temp).
4) Find the average of the window (Sij).
5) Compare the center of the window (Yij) with the average value (Sij).
6) Based on the result of comparison perform one of the two enhancement operation.
7) Finally set the range back to 0-1.
I have to run this for multiple window size (K1,K2,K3, etc.) and the images are of size 1728*2034. When the window size is selected as 100, the time consumed is very high.
Can I use vectorization at some stage to reduce the time for loops?
The profiler result (for window size 21) is as follows:
The profiler result (for window size 100) is as follows:
I have changed the code of my function and have written it without the sub-function. The code is as follows:
function [out] = CE(out,s,M)
B = 255;
Aij = zeros(1,2);
out1 = out;
n_factor = (1/(2*s+1)^2);
for i = s+1 : size(out,1) - s
for j = s+1 : size(out,2) - s
temp = out(i-s:i+s,j-s:j+s);
Yij = out1(i,j);
Sij = n_factor*sum(sum(temp));
if Yij-Sij == 0
Aij(1) = M;
Aij(2) = M;
else
Aij(1) = M/(Yij-Sij);
Aij(2) = M/(Sij-Yij);
end
if (Yij>=Sij)
out1(i,j) = ((B + Aij(1))*Yij)/(Aij(1)+Yij);
else
out1(i,j) = (Aij(2)*Yij)/(Aij(2)+B-Yij);
end
end
end
out = out1;
There is a slight improvement in the speed from 93 sec to 88 sec. Suggestions for any other improvements to my code are welcomed.
I have tried to incorporate the suggestions given to replace sliding window with convolution and then vectorize the rest of it. The code below is my implementation and I'm not getting the result expected.
function [out_im] = CE_conv(im,s,M)
B = 255;
temp = ones(2*s,2*s);
temp = temp ./ numel(temp);
out1 = conv2(im,temp,'same');
out_im = im;
Aij = im-out1; %same as Yij-Sij
Aij1 = out1-im; %same as Sij-Yij
Mij = Aij;
Mij(Aij>0) = M./Aij(Aij>0); % if Yij>Sij Mij = M/Yij-Sij;
Mij(Aij<0) = M./Aij1(Aij<0); % if Yij<Sij Mij = M/Sij-Yij;
Mij(Aij==0) = M; % if Yij-Sij == 0 Mij = M;
out_im(Aij>=0) = ((B + Mij(Aij>=0)).*im(Aij>=0))./(Mij(Aij>=0)+im(Aij>=0));
out_im(Aij<0) = (Mij(Aij<0).*im(Aij<0))./ (Mij(Aij<0)+B-im(Aij<0));
I am not able to figure out where I'm going wrong.
A detailed explanation of what I'm trying to implement is given in the following paper:
Vonikakis, Vassilios, and Ioannis Andreadis. "Multi-scale image contrast enhancement." In Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on, pp. 856-861. IEEE, 2008.
I've tried to see if I could get those times down by processing with colfiltand nlfilter, since both are usually much faster than for-loops for sliding window image processing.
Both worked fine for relatively small windows. For an image of 2048x2048 pixels and a window of 10x10, the solution with colfilt takes about 5 seconds (on my personal computer). With a window of 21x21 the time jumped to 27 seconds, but that is still a relative improvement on the times displayed on the question. Unfortunately I don't have enough memory to colfilt using windows of 100x100, but the solution with nlfilter works, though taking about 120 seconds.
Here the code
Solution with colfilt:
function outval = enhancematrix(inputmatrix,M,B)
%Inputmatrix is a 2D matrix or column vector, outval is a 1D row vector.
% If inputmatrix is made of integers...
inputmatrix = double(inputmatrix);
%1. Compute S and Y
normFactor = 1 / (size(inputmatrix,1) + 1).^2; %Size of column.
S = normFactor*sum(inputmatrix,1); % Sum over the columns.
Y = inputmatrix(ceil(size(inputmatrix,1)/2),:); % Center row.
% So far we have all S and Y, one value per column.
%2. Compute A(abs(Y-S))
A = Afunc(abs(S-Y),M);
% And all A: one value per column.
%3. The tricky part. If Y(i)-S(i) > 0 do something.
doPositive = (Y > S);
doNegative = ~doPositive;
outval = zeros(1,size(inputmatrix,2));
outval(doPositive) = (B + A(doPositive) .* Y(doPositive)) ./ (A(doPositive) + Y(doPositive));
outval(doNegative) = (A(doNegative) .* Y(doNegative)) ./ (A(doNegative) + B - Y(doNegative));
end
function out = Afunc(x,M)
% Input x is a row vector. Output is another row vector.
out = x;
out(x == 0) = M;
out(x ~= 0) = M./x(x ~= 0);
end
And to call it, simply do:
M = 1000; B = 255; enhancenow = #(x) enhancematrix(x,M,B);
w = 21 % windowsize
result = colfilt(inputImage,[w w],'sliding',enhancenow);
Solution with nlfilter:
function outval = enhanceimagecontrast(neighbourhood,M,B)
%1. Compute S and Y
normFactor = 1 / (length(neighbourhood) + 1).^2;
S = normFactor*sum(neighbourhood(:));
Y = neighbourhood(ceil(size(neighbourhood,1)/2),ceil(size(neighbourhood,2)/2));
%2. Compute A(abs(Y-S))
test = (Y>=S);
A = Afunc(abs(Y-S),M);
%3. Return outval
if test
outval = ((B + A) * Y) / (A + Y);
else
outval = (A * Y) / (A + B - Y);
end
function aval = Afunc(x,M)
if (x == 0)
aval = M;
else
aval = M/x;
end
And to call it, simply do:
M = 1000; B = 255; enhancenow = #(x) enhanceimagecontrast(x,M,B);
w = 21 % windowsize
result = nlfilter(inputImage,[w w], enhancenow);
I didn't spend much time checking that everything is 100% correct, but I did see some nice contrast enhancement (hair looks particularly nice).
This answer is the implementation that was suggested by Peter. I debugged the implementation and presenting the final working version of the fast implementation.
function [out_im] = CE_conv(im,s,M)
B = 255;
im = ( im - min(im(:)) ) ./ ( max(im(:)) - min(im(:)) )*255;
h = ones(s,s)./(s*s);
out1 = imfilter(im,h,'conv');
out_im = im;
Aij = im-out1; %same as Yij-Sij
Aij1 = out1-im; %same as Sij-Yij
Mij = Aij;
Mij(Aij>0) = M./Aij(Aij>0); % if Yij>Sij Mij = M/(Yij-Sij);
Mij(Aij<0) = M./Aij1(Aij<0); % if Yij<Sij Mij = M/(Sij-Yij);
Mij(Aij==0) = M; % if Yij-Sij == 0 Mij = M;
out_im(Aij>=0) = ((B + Mij(Aij>=0)).*im(Aij>=0))./(Mij(Aij>=0)+im(Aij>=0));
out_im(Aij<0) = (Mij(Aij<0).*im(Aij<0))./ (Mij(Aij<0)+B-im(Aij<0));
out_im = ( out_im - min(out_im(:)) ) ./ ( max(out_im(:)) - min(out_im(:)) );
To call this use the following code
I = imread('pout.tif');
w_size = 51;
M = 4000;
output = CE_conv(I(:,:,1),w_size,M);
The output for the 'pout.tif' image is given below
The execution time for Bigger image and with 100*100 block size is around 5 secs with this implementation.
I'm trying to make a time stepping code using the 4th order Runge-Kutta method but am running into issues indexing one of my values properly. My code is:
clc;
clear all;
L = 32; M = 32; N = 32; % No. of elements
Lx = 2; Ly = 2; Lz = 2; % Size of each element
dx = Lx/L; dy = Ly/M; dz = Lz/N; % Step size
Tt = 1;
t0 = 0; % Initial condition
T = 50; % Final time
dt = (Tt-t0)/T; % Determining time step interval
% Wave characteristics
H = 2; % Wave height
a = H/2; % Amplitude
Te = 6; % Period
omega = 2*pi/Te; % Wave rotational frequency
d = 25; % Water depth
x = 0; % Location of cylinder axis
u0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (u values)
v0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (v values)
w0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (w values)
[k,L] = disp(d,omega); % Solving for k and wavelength using Newton-Raphson function
%u = zeros(1,50);
%v = zeros(1,50);
%w = zeros(1,50);
time = 1:1:50;
for t = 1:T
for i = 1:L
for j = 1:M
for k = 1:N
eta(i,j,k,t) = a*cos(omega*time(1,t);
u(i,j,k,1) = u0(i,j,k,1);
v(i,j,k,1) = v0(i,j,k,1);
w(i,j,k,1) = w0(i,j,k,1);
umag(i,j,k,t) = a*omega*(cosh(k*(d+eta(i,j,k,t))))/sinh(k*d);
vmag(i,j,k,t) = 0;
wmag(i,j,k,t) = -a*omega*(sinh(k*(d+eta(i,j,k,t))))/sinh(k*d);
uRHS(i,j,k,t) = umag(i,j,k,t)*cos(k*x-omega*t);
vRHS(i,j,k,t) = vmag(i,j,k,t)*sin(k*x-omega*t);
wRHS(i,j,k,t) = wmag(i,j,k,t)*sin(k*x-omega*t);
k1x(i,j,k,t) = dt*uRHS(i,j,k,t);
k2x(i,j,k,t) = dt*(0.5*k1x(i,j,k,t) + dt*uRHS(i,j,k,t));
k3x(i,j,k,t) = dt*(0.5*k2x(i,j,k,t) + dt*uRHS(i,j,k,t));
k4x(i,j,k,t) = dt*(k3x(i,j,k,t) + dt*uRHS(i,j,k,t));
u(i,j,k,t+1) = u(i,j,k,t) + (1/6)*(k1x(i,j,k,t) + 2*k2x(i,j,k,t) + 2*k3x(i,j,k,t) + k4x(i,j,k,t));
k1y(i,j,k,t) = dt*vRHS(i,j,k,t);
k2y(i,j,k,t) = dt*(0.5*k1y(i,j,k,t) + dt*vRHS(i,j,k,t));
k3y(i,j,k,t) = dt*(0.5*k2y(i,j,k,t) + dt*vRHS(i,j,k,t));
k4y(i,j,k,t) = dt*(k3y(i,j,k,t) + dt*vRHS(i,j,k,t));
v(i,j,k,t+1) = v(i,j,k,t) + (1/6)*(k1y(i,j,k,t) + 2*k2y(i,j,k,t) + 2*k3y(i,j,k,t) + k4y(i,j,k,t));
k1z(i,j,k,t) = dt*wRHS(i,j,k,t);
k2z(i,j,k,t) = dt*(0.5*k1z(i,j,k,t) + dt*wRHS(i,j,k,t));
k3z(i,j,k,t) = dt*(0.5*k2z(i,j,k,t) + dt*wRHS(i,j,k,t));
k4z(i,j,k,t) = dt*(k3z(i,j,k,t) + dt*wRHS(i,j,k,t));
w(i,j,k,t+1) = w(i,j,k,t) + (1/6)*(k1z(i,j,k,t) + 2*k2z(i,j,k,t) + 2*k3z(i,j,k,t) + k4z(i,j,k,t));
a(i,j,k,t+1) = ((u(i,j,k,t+1))^2 + (v(i,j,k,t+1))^2 + (w(i,j,k,t+1))^2)^0.5;
end
end
end
end
At the moment, the values seem to be fine for the first iteration but then I have the error Index exceeds matrix dimension in the line calculating eta. I understand that I am not correctly indexing the eta value but am not sure how to correct this.
My goal is to update the value of eta for each loop of t and then use that new eta value for the rest of the calculations.
I'm still quite new to programming and am trying to understand indexing, especially in 3 or 4 dimensional matrices and would really appreciate any advice in correctly calculating this value.
Thanks in advance for any advice!
You declare
time = 1:1:50;
which is just a row vector but access it here
eta(i,j,k,t) = a*cos(omega*time(i,j,k,t));
as if it were an array with 4 dimensions.
To correctly access element x of time you need to use syntax
time(1,x);
(as it is a 1 x 50 array)