Matlab 3D reconstruction - matlab

Recently, I have to do a project of multi view 3D scanning within this 2 weeks and I searched through all the books, journals and websites for 3D reconstruction including Mathworks examples and so on. I written a coding to track matched points between two images and reconstruct them into 3D plot. However, despite of using detectSURFFeatures() and extractFeatures() functions, still some of the object points are not tracked. How can I reconstruct them also in my 3D model?

What you are looking for is called "dense reconstruction". The best way to do this is with calibrated cameras. Then you can rectify the images, compute disparity for every pixel (in theory), and then get 3D world coordinates for every pixel. Please check out this Stereo Calibration and Scene Reconstruction example.

The tracking approach you are using is fine but will only get sparse correspondences. The idea is that you would use the best of these to try to determine the difference in camera orientation between the two images. You can then use the camera orientation to get better matches and ultimately to produce a dense match which you can use to produce a depth image.
Tracking every point in an image from frame to frame is hard (its called scene flow) and you won't achieve it by identifying individual features (such as SURF, ORB, Freak, SIFT etc.) because these features are by definition 'special' in that they can be clearly identified between images.

If you have access to the Computer Vision Toolbox of Matlab you could use their matching functions.
You can start for example by checking out this article about disparity and the related matlab functions.
In addition you can read about different matching techniques such as block matching, semi-global block matching and global optimization procedures. Just to name a few keywords. But be aware that the topic of stereo matching is huge one.

Related

Extracting 2D surface from 3D STEP model

I'm trying to figure out a good way to programmatically generate contours describing a 2D surface, from a 3D STEP model. Application is generating NC code for a laser-cutting program from a 3D model.
Note: it's easy enough to do this in a wide variety of CAD systems. I am writing software that needs to do it automatically.
For example, this (a STEP model):
Needs to become this (a vector file, like an SVG or a DXF):
Perhaps the most obvious way of tackling the problem is to parse the STEP model and run some kind of algorithm to detect planes and select the largest as the cut surface, then generate the contour. Not a simple task!
I've also considered using a pre-existing SDK to render the model using an orthographic camera, capture a high-res image, and then operating on it to generate the appropriate contours. This method would work, but it will be CPU-heavy, and its accuracy will be limited to the pixel resolution of the rendered image - not ideal.
This is perhaps a long shot, but does anyone have thoughts about this? Cheers!
I would use a CAD library to load the STEP file (not a CAD API), look for the planar face with the higher number of edge curves in the face loop and transpose them on the XY plane. Afterward, finding 2D geometry min/max for centering etc. would be pretty easy.
Depending on the programming language you are using I would search for "CAD control" or "CAD component" on Google combining it with "STEP import".

ideas on quadrangle/rectangle detection using convolutional neural networks

I'v been trying to do quadrangle detection and localization for weeks, my goal is to have a robust way of getting the 4 points of an quadrangle(rectangle), so I can apply projective transform to an Image then attach it to the source image. I have try the classic opencv contour method, and also using hough transform to find lines then calculate intersections, those two methods is unusable when apply it to real life images.
So I turn to CNN for help, but currently i haven't find any one try to use CNN to solve this simple problem.
My first attempt is to use state-of-art object detection and localization methods to get quadrangle's bounding box so i can narrow the search of 4 points, then use image processing & computer vision methods to further the search for 4 points. but after trying YOLOv2 and Faster-RCNN, the prediction accuracy is not ideal.
So I'm wondering if there is any idea i can do this end to end, training and feedforward all using a single neural network. it also must be able to deal with occlusion reasonably well.
Currently my idea is to remove the fc-layers and make a huge activation map that has the same width and height as the first input layer(eg. 448x448) then optimize the 4 most highly activated areas, using argmax to get the position. but this method only works for one quadrangle it doesn't work well with corner occlusions as well.
I'll be appreciated if anyone can provide any suggestions. Thanks a lot!
You are absolutely right about the first methods you mentioned. Hough transform like methods are old and not useful for images in the wild. And of course, computer vision field turned its face to object detection and recognition with rise of deep learning.
However, there is a very nice discussion came up recently.
Have we forgotten about Geometry in Computer Vision?
My suggestion would be contour detection and then apply Hough transform(use state of the art) methods to detect rectangles you want, about the occlusion, you can set parameters for Hough transform to be more forgiving for missing edge pixels with parameters.
You can for example check most recent contour detection methods as in recent CVPR paper.

how to measure distance and centroid of moving object with Matlab stereo computer vision?

Which Matlab functions or examples should be used to (1) track distance from moving object to stereo (binocular) cameras, and (2) track centroid (X,Y,Z) of moving objects, ideally in the range of 0.6m to 6m. from cameras?
I've used the Matlab example that uses the PeopleDetector function, but this becomes inaccurate when a person is within 2m. because it begins clipping heads and legs.
The first thing that you need deal with, is in how detect the object of interest (I suppose you have resolved this issue). There are a lot of approaches of how to detect moving objects. If your cameras will stand in a fix position you can work only with one camera and use some background subtraction to get the objects that appear in the scene (Some info here). If your cameras are are moving, I think the best approach is to work with optical flow of the two cameras (instead to use a previous frame to get the flow map, the stereo pair images are used to get the optical flow map in each fame).
In MatLab, there is an option called disparity computation, this could help you to try to detect the objects in scene, after this you need to add a stage to extract the objects of your interest, you can use some thresholds. Once you have the desired objects, you need to put them in a binary mask. In this mask you can use some image momentum (Check this and this) extractor to calculate the centroids. If the images in the binary mask look noissy you can use some morphological operations to improve the reults (watch this).

Matlab face alignment code

I am attempting to do some face recognition and hallucination experiments and in order to get the best results, I first need to ensure all the facial images are aligned. I am using several thousand images for experimenting.
I have been scouring the Internet for past few days and have found many different programs which claim to do so, however due to Matlabs poor backwards compatibility, many of the programs no longer work. I have tried several different programs which don't run as they are calling onto Matlab functions which have since been removed.
The closest I found was using the SIFT algorithm, code found here
http://people.csail.mit.edu/celiu/ECCV2008/
Which does help align the images, but unfortunately it also downsamples the image, so the result ends up quite blurry looking which would have a negative effect on any experiments I ran.
Does anyone have any Matlab code samples or be able to point me in the right direction to code that actually aligns faces in a database.
Any help would be much appreciated.
You can find this recent work on Face Detection, Pose Estimation and Landmark Localization in the Wild. It has a working Matlab implementation and it is quite a good method.
Once you identify keypoints on all your faces you can morph them into a single reference and work from there.
The easiest way it with PCA and the eigen vector. To found X and Y most representative data. So you'll get the direction of the face.
You can found explication in this document : PCA Aligment
Do you need to detect the faces first, or are they already cropped? If you need to detect the faces, you can use vision.CascadeObjectDetector object in the Computer Vision System Toolbox.
To align the faces you can try the imregister function in the Image Processing Toolbox. Alternatively, you can use a feature-based approach. The Computer Vision System Toolbox includes a number of interest point detectors, feature descriptors, and a matchFeatures function to match the descriptors between a pair of images. You can then use the estimateGeometricTransform function to estimate an affine or even a projective transformation between two images. See this example for details.

Calculating corresponding pixels

I have a computer vision set up with two cameras. One of this cameras is a time of flight camera. It gives me the depth of the scene at every pixel. The other camera is standard camera giving me a colour image of the scene.
We would like to use the depth information to remove some areas from the colour image. We plan on object, person and hand tracking in the colour image and want to remove far away background pixel with the help of the time of flight camera. It is not sure yet if the cameras can be aligned in a parallel set up.
We could use OpenCv or Matlab for the calculations.
I read a lot about rectification, Epipolargeometry etc but I still have problems to see the steps I have to take to calculate the correspondence for every pixel.
What approach would you use, which functions can be used. In which steps would you divide the problem? Is there a tutorial or sample code available somewhere?
Update We plan on doing an automatic calibration using known markers placed in the scene
If you want robust correspondences, you should consider SIFT. There are several implementations in MATLAB - I use the Vedaldi-Fulkerson VL Feat library.
If you really need fast performance (and I think you don't), you should think about using OpenCV's SURF detector.
If you have any other questions, do ask. This other answer of mine might be useful.
PS: By correspondences, I'm assuming you want to find the coordinates of a projection of the same 3D point on both your images - i.e. the coordinates (i,j) of a pixel u_A in Image A and u_B in Image B which is a projection of the same point in 3D.