Given a signal x(t), we need to find the symmetrical with respect to the Y-axis signal, x(-t)
If it's helpful to you, here's how my code works thus far:
t = [-5:0.01:5];
wt = (t>=0)&(t<=1);
r = #(t) t/5;
x = r(t).*wt;
%reflection - HERE IS WHERE I AM STUCK, basically looking for v(t) = x(-t)
%Shift by 2
y = v(t-2);
%The rest of the program - printing plots basically
I have tried using these:
v = x(t(1:end));
v = x(t(end:-1:1));
v = x(fliplr(t));
But it's not correct, since I get the error Array indices must be positive integers or logical values. as expected. Any ideas?
One solution is that you consider something like this:
x=signal; % with length 2*N+1 and symmetric
t= -N:N;
now, consider you want the value of index -2.
x(find(t==-2))
For ramp signal as an instance:
signal=[r(end:-1:1) 0 r]
with this assumption that r is a row-base vector and N length.
You should first define the signal function and then sampling it, not the other way round.
For instance, I here define a signal s(t) which is a windowed ramp:
s = #(t) t.*((t>=0)&(t<=1))
Then, I can find the samples for the signal and its symmetrical:
t = -5:0.01:5;
plot(t,s(t),t,s(-t))
What worked for me was defining a reflect function as follows:
function val = reflect(t)
val = -t;
end
And then using it with the shifting function in order to achieve my goal.
Given any sampled signal in an arbitrary time interval:
t = [-5.003:0.01:10];
x = randn(size(t));
You can reflect x around t=0 with:
t = -flip(t);
x = flip(x);
Note that in the example above, t=0 is not sampled. This is not necessary for this method.
I am trying to figure out how to right a math based app with Matlab, although I cannot seem to figure out how to get the Monte Carlo method of integration to work. I feel that I do not have algorithm thought out correctly either. As of now, I have something like:
// For the function {integral of cos(x^3)*exp(x^(1/2))+x dx
// from x = 0 to x = 10
ans = 0;
for i = 1:100000000
x = 10*rand;
ans = ans + cos(x^3)*exp(x^(1/2))+x
end
I feel that this is completely wrong because my outputs are hardly even close to what is expected. How should I correctly write this? Or, how should the algorithm for setting this up look?
Two issues:
1) If you look at what you're calculating, "ans" is going to grow as i increases. By putting a huge number of samples, you're just increasing your output value. How could you normalize this value so that it stays relatively the same, regardless of number of samples?
2) Think about what you're trying to calculate here. Your current "ans" is giving you the sum of 100000000 independent random measurements of the output to your function. What does this number represent if you divide by the number of samples you've taken? How could you combine that knowledge with the range of integration in order to get the expected area under the curve?
I managed to solve this with the formula I found here. I ended up using:
ans = 0;
n = 0;
for i:1:100000000
x = 10*rand;
n = n + cos(x^3)*exp(x^(1/2))+x;
end
ans = ((10-0)/100000000)*n
i am trying to calculate the inverse fourier transform of the vector XRECW. for some reason i get a vector of NANs.
please help!!
t = -2:1/100:2;
x = ((2/5)*sin(5*pi*t))./((1/25)-t.^2);
w = -20*pi:0.01*pi:20*pi;
Hw = (exp(j*pi.*(w./(10*pi)))./(sinc(w./(10*pi)))).*(heaviside(w+5*pi)-heaviside(w-5*pi));%low pass filter
xzohw = 0;
for q=1:20:400
xzohw = xzohw + x(q).*(2./w).*sin(0.1.*w).*exp(-j.*w*0.2*((q-1)/20)+0.5);%calculating fourier transform of xzoh
end
xzohw = abs(xzohw);
xrecw = abs(xzohw.*Hw);%filtering the fourier transform high frequencies
xrect=0;
for q=1:401
xrect(q) = (1/(2*pi)).*trapz(xrecw.*exp(j*w*t(q))); %inverse fourier transform
end
xrect = abs(xrect);
plot(t,xrect)
Here's a direct answer to your question of "why" there is a nan. If you run your code, the Nan comes from dividing by zero in line 7 for computing xzohw. Notice that w contains zero:
>> find(w==0)
ans =
2001
and you can see in line 7 that you divide by the elements of w with the (2./w) factor.
A quick fix (although it is not a guarantee that your code will do what you want) is to avoid including 0 in w by using a step which avoids zero. Since pi is certainly not divisible by 100, you can try taking steps in .01 increments:
w = -20*pi:0.01:20*pi;
Using this, your code produces a plot which might resemble what you're looking for. In order to do better, we might need more details on exactly what you're trying to do, or what these variables represent.
Hope this helps!
I am asked to write an fft mix radix in matlab, but before that I want to let to do a discrete Fourier transform in a straight forward way. So I decide to write the code according to the formula defined as defined in wikipedia.
[Sorry I'm not allowed to post images yet]
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
So I wrote my code as follows:
%Brutal Force Descrete Fourier Trnasform
function [] = dft(X)
%Get the size of A
NN=size(X);
N=NN(2);
%====================
%Declaring an array to store the output variable
Y = zeros (1, N)
%=========================================
for k = 0 : (N-1)
st = 0; %the dummy in the summation is zero before we add
for n = 0 : (N-1)
t = X(n+1)*exp(-1i*2*pi*k*n/N);
st = st + t;
end
Y(k+1) = st;
end
Y
%=============================================
However, my code seems to be outputting a result different from the ones from this website:
http://www.random-science-tools.com/maths/FFT.htm
Can you please help me detect where exactly is the problem?
Thank you!
============
Never mind it seems that my code is correct....
By default the calculator in the web link applies a window function to the data before doing the FFT. Could that be the reason for the difference? You can turn windowing off from the drop down menu.
BTW there is an FFT function in Matlab
I have a MATLAB routine with one rather obvious bottleneck. I've profiled the function, with the result that 2/3 of the computing time is used in the function levels:
The function levels takes a matrix of floats and splits each column into nLevels buckets, returning a matrix of the same size as the input, with each entry replaced by the number of the bucket it falls into.
To do this I use the quantile function to get the bucket limits, and a loop to assign the entries to buckets. Here's my implementation:
function [Y q] = levels(X,nLevels)
% "Assign each of the elements of X to an integer-valued level"
p = linspace(0, 1.0, nLevels+1);
q = quantile(X,p);
if isvector(q)
q=transpose(q);
end
Y = zeros(size(X));
for i = 1:nLevels
% "The variables g and l indicate the entries that are respectively greater than
% or less than the relevant bucket limits. The line Y(g & l) = i is assigning the
% value i to any element that falls in this bucket."
if i ~= nLevels % "The default; doesnt include upper bound"
g = bsxfun(#ge,X,q(i,:));
l = bsxfun(#lt,X,q(i+1,:));
else % "For the final level we include the upper bound"
g = bsxfun(#ge,X,q(i,:));
l = bsxfun(#le,X,q(i+1,:));
end
Y(g & l) = i;
end
Is there anything I can do to speed this up? Can the code be vectorized?
If I understand correctly, you want to know how many items fell in each bucket.
Use:
n = hist(Y,nbins)
Though I am not sure that it will help in the speedup. It is just cleaner this way.
Edit : Following the comment:
You can use the second output parameter of histc
[n,bin] = histc(...) also returns an index matrix bin. If x is a vector, n(k) = >sum(bin==k). bin is zero for out of range values. If x is an M-by-N matrix, then
How About this
function [Y q] = levels(X,nLevels)
p = linspace(0, 1.0, nLevels+1);
q = quantile(X,p);
Y = zeros(size(X));
for i = 1:numel(q)-1
Y = Y+ X>=q(i);
end
This results in the following:
>>X = [3 1 4 6 7 2];
>>[Y, q] = levels(X,2)
Y =
1 1 2 2 2 1
q =
1 3.5 7
You could also modify the logic line to ensure values are less than the start of the next bin. However, I don't think it is necessary.
I think you shoud use histc
[~,Y] = histc(X,q)
As you can see in matlab's doc:
Description
n = histc(x,edges) counts the number of values in vector x that fall
between the elements in the edges vector (which must contain
monotonically nondecreasing values). n is a length(edges) vector
containing these counts. No elements of x can be complex.
I made a couple of refinements (including one inspired by Aero Engy in another answer) that have resulted in some improvements. To test them out, I created a random matrix of a million rows and 100 columns to run the improved functions on:
>> x = randn(1000000,100);
First, I ran my unmodified code, with the following results:
Note that of the 40 seconds, around 14 of them are spent computing the quantiles - I can't expect to improve this part of the routine (I assume that Mathworks have already optimized it, though I guess that to assume makes an...)
Next, I modified the routine to the following, which should be faster and has the advantage of being fewer lines as well!
function [Y q] = levels(X,nLevels)
p = linspace(0, 1.0, nLevels+1);
q = quantile(X,p);
if isvector(q), q = transpose(q); end
Y = ones(size(X));
for i = 2:nLevels
Y = Y + bsxfun(#ge,X,q(i,:));
end
The profiling results with this code are:
So it is 15 seconds faster, which represents a 150% speedup of the portion of code that is mine, rather than MathWorks.
Finally, following a suggestion of Andrey (again in another answer) I modified the code to use the second output of the histc function, which assigns entries to bins. It doesn't treat the columns independently, so I had to loop over the columns manually, but it seems to be performing really well. Here's the code:
function [Y q] = levels(X,nLevels)
p = linspace(0,1,nLevels+1);
q = quantile(X,p);
if isvector(q), q = transpose(q); end
q(end,:) = 2 * q(end,:);
Y = zeros(size(X));
for k = 1:size(X,2)
[junk Y(:,k)] = histc(X(:,k),q(:,k));
end
And the profiling results:
We now spend only 4.3 seconds in codes outside the quantile function, which is around a 500% speedup over what I wrote originally. I've spent a bit of time writing this answer because I think it's turned into a nice example of how you can use the MATLAB profiler and StackExchange in combination to get much better performance from your code.
I'm happy with this result, although of course I'll continue to be pleased to hear other answers. At this stage the main performance increase will come from increasing the performance of the part of the code that currently calls quantile. I can't see how to do this immediately, but maybe someone else here can. Thanks again!
You can sort the columns and divide+round the inverse indexes:
function Y = levels(X,nLevels)
% "Assign each of the elements of X to an integer-valued level"
[S,IX]=sort(X);
[grid1,grid2]=ndgrid(1:size(IX,1),1:size(IX,2));
invIX=zeros(size(X));
invIX(sub2ind(size(X),IX(:),grid2(:)))=grid1;
Y=ceil(invIX/size(X,1)*nLevels);
Or you can use tiedrank:
function Y = levels(X,nLevels)
% "Assign each of the elements of X to an integer-valued level"
R=tiedrank(X);
Y=ceil(R/size(X,1)*nLevels);
Surprisingly, both these solutions are slightly slower than the quantile+histc solution.