multiple clients with server handling - sockets

I am just starting to learn sockets and client/servers. I am not clear on the following concept. Assume non-blocking sockets.
Assume I have a server application, and I have 1000 clients trying to talk to it, I think it is very realistic. Assume the client and server talk via sockets.
1- Does this mean that with every client, there is a separate socket connection? (Do we have 1000 sockets, or one socket with 1000 connections?
2- Does every socket connection belong to a separate thread? If Yes, How can we limit number of threads as it can get out of control?

Assuming you're using TCP, then every connection is over a separate socket. The operating system allocates them using file descriptors.
When using a protocol like UDP, this need not be the case, and won't be unless you write the code to do make it happen.
Threading? It depends on how you build the server. You don't need threads to be a part of a server at all and you can (obviously) have multiple threads with just a single connection. One common way of doing things, however, is to hand the socket returned by accept() to a new thread, yes.
If you don't have an interest in threads--for example, if the server only performs very quick tasks and creating a thread is just wasting time--you can use select() to poll the sockets and determine which ones need attention. Some servers use a combination of threading and polling to try to maximize throughput.

Related

.Net 4.5 TCP Server scale to thousands of connected clients

I need to build a TCP server using C# .NET 4.5+, it must be capable of comfortably handling at least 3,000 connected clients that will be send messages every 10 seconds and with a message size from 250 to 500 bytes.
The data will be offloaded to another process or queue for batch processing and logging.
I also need to be able to select an existing client to send and receive messages (greater then 500 bytes) messages within a windows forms application.
I have not built an application like this before so my knowledge is based on the various questions, examples and documentation that I have found online.
My conclusion is:
non-blocking async is the way to go. Stay away from creating multiple threads and blocking IO.
SocketAsyncEventArgs - Is complex and really only needed for very large systems, BTW what constitutes a very large system? :-)
BeginXXX methods will suffice (EAP).
Using TAP I can simplify 3. by using Task.Factory.FromAsync, but it only produces the same outcome.
Use a global collection to keep track of the connected tcp clients
What I am unsure about:
Should I use a ManualResetEvent when interacting with the TCP Client collection? I presume the asyc events will need to lock access to this collection.
Best way to detect a disconnected client after I have called BeginReceive. I've found the call is stuck waiting for a response so this needs to be cleaned up.
Sending messages to a specific TCP Client. I'm thinking function in custom TCP session class to send a message. Again in an async model, would I need to create a timer based process that inspects a message queue or would I create an event on a TCP Session class that has access to the TcpClient and associated stream? Really interested in opinions here.
I'd like to use a thread for the entire service and use non-blocking principals within, are there anythings I should be mindful of espcially in context of 1. ManualResetEvent etc..
Thank you for reading. I am keen to hear constructive thoughts and or links to best practices/examples. It's been a while since I've coded in c# so apologies if some of my questions are obvious. Tasks, async/await are new to me! :-)
I need to build a TCP server using C# .NET 4.5+
Well, the first thing to determine is whether it has to be base-bones TCP/IP. If you possibly can, write one that uses a higher-level abstraction, like SignalR or WebAPI. If you can write one using WebSockets (SignalR), then do that and never look back.
Your conclusions sound pretty good. Just a few notes:
SocketAsyncEventArgs - Is complex and really only needed for very large systems, BTW what constitutes a very large system? :-)
It's not so much a "large" system in the terms of number of connections. It's more a question of how much traffic is in the system - the number of reads/writes per second.
The only thing that SocketAsyncEventArgs does is make your I/O structures reusable. The Begin*/End* (APM) APIs will create a new IAsyncResult for each I/O operation, and this can cause pressure on the garbage collector. SocketAsyncEventArgs is essentially the same as IAsyncResult, only it's reusable. Note that there are some examples on the 'net that use the SocketAsyncEventArgs APIs without reusing the SocketAsyncEventArgs structures, which is completely ridiculous.
And there's no guidelines here: heavier hardware will be able to use the APM APIs for much more traffic. As a general rule, you should build a barebones APM server and load test it first, and only move to SAEA if it doesn't work on your target server's hardware.
On to the questions:
Should I use a ManualResetEvent when interacting with the TCP Client collection? I presume the asyc events will need to lock access to this collection.
If you're using TAP-based wrappers, then await will resume on a captured context by default. I explain this in my blog post on async/await.
There are a couple of approaches you can take here. I have successfully written a reliable and performant single-threaded TCP/IP server; the equivalent for modern code would be to use something like my AsyncContextThread class. It provides a context that will cause await to resume on that same thread by default.
The nice thing about single-threaded servers is that there's only one thread, so no synchronization or coordination is necessary. However, I'm not sure how well a single-threaded server would scale. You may want to give that a try and see how much load it can take.
If you do find you need multiple threads, then you can just use async methods on the thread pool; await will not have a captured context and so will resume on a thread pool thread. In this case, yes, you'd need to coordinate access to any shared data structures including your TCP client collection.
Note that SignalR will handle all of this for you. :)
Best way to detect a disconnected client after I have called BeginReceive. I've found the call is stuck waiting for a response so this needs to be cleaned up.
This is the half-open problem, which I discuss in detail on my blog. The best way (IMO) to solve this is to periodically send a "noop" keepalive message to each client.
If modifying the protocol isn't possible, then the next-best solution is to just close the connection after a no-communication timeout. This is how HTTP "persistent"/"keep-alive" connections decide to close. There's another possibile solution (changing the keepalive packet settings on the socket), but it's not as easy (requires p/Invoke) and has other problems (not always respected by routers, not supported by all OS TCP/IP stacks, etc).
Oh, and SignalR will handle this for you. :)
Sending messages to a specific TCP Client. I'm thinking function in custom TCP session class to send a message. Again in an async model, would I need to create a timer based process that inspects a message queue or would I create an event on a TCP Session class that has access to the TcpClient and associated stream? Really interested in opinions here.
If your server can send messages to any client (i.e., it's not just a request/response protocol; any part of the server can send messages to any client without the client requesting an update), then yes, you'll need a proper queue of outgoing requests because you can't (reliably) issue multiple concurrent writes on a socket. I wouldn't have the consumer be timer-based, though; there are async-compatible producer/consumer queues available (like BufferBlock<T> from TPL Dataflow, and it's not that hard to write one if you have async-compatible locks and condition variables).
Oh, and SignalR will handle this for you. :)
I'd like to use a thread for the entire service and use non-blocking principals within, are there anythings I should be mindful of espcially in context of 1. ManualResetEvent etc..
If your entire service is single-threaded, then you shouldn't need any coordination primitives at all. However, if you do use the thread pool instead of syncing back to the main thread (for scalability reasons), then you will need to coordinate. I have a coordination primitives library that you may find useful because its types have both synchronous and asynchronous APIs. This allows, e.g., one method to block on a lock while another method wants to asynchronously block on a lock.
You may have noticed a recurring theme around SignalR. Use it if you possibly can! If you have to write a bare-bones TCP/IP server and can't use SignalR, then take your initial time estimate and triple it. Seriously. Then you can get started down the path of painful TCP with my TCP/IP FAQ blog series.

ZeroMQ mixed PUB/SUB DEALER/ROUTER pattern

I need to do the following:
multiple clients connecting to the SAME remote port
each of the clients open 2 different sockets, one is a PUB/SUB, the
other is a ROUTER/DEALER ( the server can occasionally send back to client heartbeats, different server related information ).
I am completely lost whether it can be done in ZeroMQ or not.
Obviously if I can use 2 remote ports, that is not an issue, but I fail
to understand if my setup can be achieved with some kind of envelope
usage in ZeroMQ.
Can it be done?
Thanks,
Update:
To clarify what I wish to achieve.
Multiple clients can communicate with the server
Clients operate on request-response basis mostly(on one socket)
Clients create a session socket, which means that whenever this
type of socket is created, a separate worker thread needs to be created
and from that time on the client communicates with this worker thread
with regards to requests processing, e.g. server thread must not block
the connection of other clients when dealing with the request of one client
However clients can receive occasional messages from the worker thread with regards to heartbeats of the worker.
Update2:
Actually I could sort it out. What I did:
identify clients obviously, so ROUTER/DEALER is used, e.g. clients
are indeed dealers, hence async processing is provided
clients send messages to the one and only local port, where the router sits
router peeks into messages (kinda the lazy pirate example), checks whether a new client comes in; if yes it offloads to a separate thread, and connects the separate thread with an internal "inproc:" socket
router obviously polls for the frontend and all connected clients' backends and sends messages back and forth.
What bugs me is that it is an overkill if I compare this with a "regular" socket solution, where I could have connected the client with the worker thread DIRECTLY (e.g. worker thread could recv from the socket opened by the client directly), hence I could spare the routing completely.
What am I missing?
There was a discussion on the ZeroMQ mailing list recently about multiplexing multiple services on one TCP socket. The proposed solutions is essentially what you implemented.
The discussion also mentions Malamute with its brokers which essentially provides a framework based on ZeroMQ which also provides the functionality you need. I haven't had the time to look into it myself, but it looks promising.

Topics in ZeroMQ REP sockets

When using ØMQ socket of type SUB, one may use
sub_socket.setsockopt_string(zmq.SUBSCRIBE, 'topic')
Is the same possible also with REP sockets, allowing a worker to only handle specific topics, leaving other topics to different workers?
I'm very afraid that it is impossible, quoting http://learning-0mq-with-pyzmq.readthedocs.org/en/latest/pyzmq/patterns/pubsub.html:
In the current versions of ØMQ, filtering happens at the subscriber side, not the publisher side.
But still, I'm asking if there is some trick to achieve that, because such a functionality would have a huge impact on my infrastructure.
Nope. Can I assume that you've got a REQ or DEALER server socket that sends work to REP workers, that then respond with the completed work back to the server? And that you're looking for a way to make your server communicate to specific clients rather than just pass out tasks in a round-robin fashion?
Can't do it. See here, those sockets are only, always, round-robin. If you want to communicate to a specific client, you must either have a socket that talks only to that client, or you must start the communication from the client (switch your socket pairing so the worker requests whatever work its ready for, and the server responds with it, and then the worker creates a new request with the completed work). Doing anything else gets much more complicated.

Winsock: Can i call send function at the same time for different socket?

Let's say, I have a server with many connected clients via TCP, i have a socket for every client and i have a sending and receiving thread for every client. Is it safe and possible to call send function at the same time as it will not call send function for same socket.
If it's safe and ok, Can i stream data to clients simultaneously without blocking send function for other clients ?
Thank you very much for answers.
Yes it is possible and thread-safe. You could have tested it, or worked out for yourself that IS, IIS, SQL Server etc. wouldn't work very well if it wasn't.
Assuming this is Windows from the tag of "Winsock".
This design (having a send/receive thread for every single connected client), overall, is not going to scale. Hopefully you are aware of that and you know that you have an extremely limited number of clients (even then, I wouldn't write it this way).
You don't need to have a thread pair for every single client.
You can serve tons of clients with a single thread using non-blocking IO and read/write ready notifications (either with select() or one of the varieties of Overlapped IO such as completion routines or completion ports). If you use completion ports you can set a pool of threads to handle socket IO and queue the work for your own worker thread or threads/threadpool.
Yes, you can send and receive to many sockets at once from different threads; but you shouldn't need those extra threads because you shouldn't be making blocking calls to send/recv at all. When you make a non-blocking call the amount that could be written immediately is written and the function returns, you then note how much was sent and ask for notification when the socket is next writable.
I think you might want to consider a different approach as this isn't simple stuff; if you're using .Net you might get by with building this with TcpListener or HttpListener (both of which use completion ports for you), though be aware that you can't easily disable Nagle's algorithm with those so if you need interactivity (think of the auto-complete on Google's search page) then you probably won't get the performance you want.

Does winsock api multithread automatically?

I am wring a small http server which is using the Microsoft Windows WinSock API.
Do I need to apply multithreaded logic when handling multiple users?
Currently Windows sends a message when there is a network event and each message
carried (in wParam) the socket to be used in either send() or recv().
When client A connects and requests a couple of files usually a number of socket
are created by Winsock. My server then get a message that "send this file to
socket 123" and later "send that file to socket 456"
When another client connect it too gets a few sockets, say 789 and 654.
My server then respond to requests to send data using supplied socket number. It
does not have to know who wants the file since the correct file has to be sent to
the right socket.
I do not know whether Windows itself uses multiple threads when handling
accepting connection and sending the message down to my program.
So my question is:
Do I need to apply multithreaded logic when handling multiple users? And if so at
what point should I create a thread?
You typically use a thread per socket. And if you are accepting connections, a thread in a loop to block, waiting for an incoming connection socket. You then create a new thread and pass this socket handle to the new thread to handle. When that connection is closed and done with, simply let that thread terminate (or join). This is the basis of a threaded server.
in psudo code...
loop {
socket = accept();
new ThreadHandler( socket )
}
Using a single thread to handle multiple sockets is tricky, mainly because the thread can block (stop, waiting) while its writing, or more often, reading from a socket. It's not for the faint hearted.
For most applications, there is no point in using multiple threads to handle network connections. I've made a small writeup in an answer to this question.
Multiple threads become useful when handling the received data requires an unpredictable amount of CPU time, for example in database servers, or when the program structure does not allow for requests to be handled asynchronously.
There is also a third option, the "worker pool". A single thread handles all incoming connections and deserializes incoming requests, and then passes off work items to a pool of threads that handle one item at a time.
This way, simply opening a connection does not yet consume the resources needed for an entire thread, and system load is implicitly limited by the number of threads in the pool.