Can someone tell me about the kNN search algo that Matlab uses? - matlab

I wrote a basic O(n^2) algorithm for a nearest neighbor search. As usual Matlab 2013a's knnsearch(..) method works a lot faster.
Can someone tell me what kind of optimization they used in their implementation?
I am okay with reading any documentation or paper that you may point me to.
PS: I understand the documentation on the site mentions the paper on kd trees as a reference. But as far as I understand kd trees are the default option when column number is less than 10. Mine is 21. Correct me if I'm wrong about it.

The biggest optimization MathWorks have made in implementing nearest-neighbors search is that all the hard stuff is implemented in a MEX file, as compiled C, rather than MATLAB.
With an algorithm such as kNN that (in my limited understanding) is quite recursive and difficult to vectorize, that's likely to give such an improvement that the O() analysis will only be relevant at pretty high n.
In more detail, under the hood the knnsearch command uses createns to create a NeighborSearcher object. By default, when X has less than 10 columns, this will be a KDTreeSearcher object, and when X has more than 10 columns it will be an ExhaustiveSearcher object (both KDTreeSearcher and ExhaustiveSearcher are subclasses of NeighborSearcher).
All objects of class NeighbourSearcher have a method knnsearch (which you would rarely call directly, using instead the convenience command knnsearch rather than this method). The knnsearch method of KDTreeSearcher calls straight out to a MEX file for all the hard work. This lives in matlabroot\toolbox\stats\stats\#KDTreeSearcher\private\knnsearchmex.mexw64.
As far as I know, this MEX file performs pretty much the algorithm described in the paper by Friedman, Bentely, and Finkel referenced in the documentation page, with no structural changes. As the title of the paper suggests, this algorithm is O(log(n)) rather than O(n^2). Unfortunately, the contents of the MEX file are not available for inspection to confirm that.

The code builds a KD-tree space-partitioning structure to speed up nearest neighbor search, think of it like building indexes commonly used in RDBMS to speed up lookup operations.
In addition to nearest neighbor(s) searches, this structure also speeds up range-searches, which finds all points that are within a distance r from a query point.
As pointed by #SamRoberts, the core of the code is implemented in C/C++ as a MEX-function.
Note that knnsearch chooses to build a KD-tree only under certain conditions, and falls back to an exhaustive search otherwise (by naively searching all points for the nearest one).
Keep in mind that in cases of very high-dimensional data (and few instances), the algorithm degenerates and is no better than an exhaustive search. In general as you go with dimensions d>30, the cost of searching KD-trees will increase to searching almost all the points, and could even become worse than a brute force search due to the overhead involved in building the tree.
There are other variations to the algorithm that deals with high dimensions such as the ball trees which partitions the data in a series of nesting hyper-spheres (as opposed to partitioning the data along Cartesian axes like KD-trees). Unfortunately those are not implemented in the official Statistics toolbox. If you are interested, here is a paper which presents a survey of available kNN algorithms.
(The above is an illustration of searching a kd-tree partitioned 2d space, borrowed from the docs)

Related

Best Method to Intersect Huge HyperLogLogs in Redis

The problem is simple: I need to find the optimal strategy to implement accurate HyperLogLog unions based on Redis' representation thereof--this includes handling their sparse/dense representations if the data structure is exported for use elsewhere.
Two Strategies
There are two strategies, one of which seems vastly simpler. I've looked at the actual Redis source and I'm having a bit of trouble (not big in C, myself) figuring out whether it's better from a precision and efficiency perspective to use their built-in structures/routines or develop my own. For what it's worth, I'm willing to sacrifice space and to some degree errors (stdev +-2%) in the pursuit of efficiency with extremely large sets.
1. Inclusion Principle
By far the simplest of the two--essentially I would just use the lossless union (PFMERGE) in combination with this principle to calculate an estimate of the overlap. Tests seem to show this running reliably in many cases, although I'm having trouble getting an accurate handle on in-the-wild efficiency and accuracy (some cases can produce errors of 20-40% which is unacceptable in this use case).
Basically:
aCardinality + bCardinality - intersectionCardinality
or, in the case of multiple sets...
aCardinality + (bCardinality x cCardinality) - intersectionCardinality
seems to work in many cases with good accuracy, but I don't know if I trust it. While Redis has many built-in low-cardinality modifiers designed to circumvent known HLL issues, I don't know if the issue of wild inaccuracy (using inclusion/exclusion) is still present with sets of high disparity in size...
2. Jaccard Index Intersection/MinHash
This way seems more interesting, but a part of me feels like it may computationally overlap with some of Redis' existing optimizations (ie, I'm not implementing my own HLL algorithm from scratch).
With this approach I'd use a random sampling of bins with a MinHash algorithm (I don't think an LSH implementation is worth the trouble). This would be a separate structure, but by using minhash to get the Jaccard index of the sets, you can then effectively multiply the union cardinality by that index for a more accurate count.
Problem is, I'm not very well versed in HLL's and while I'd love to dig into the Google paper I need a viable implementation in short order. Chances are I'm overlooking some basic considerations either of Redis' existing optimizations, or else in the algorithm itself that allows for computationally-cheap intersection estimates with pretty lax confidence bounds.
thus, my question:
How do I most effectively get a computationally-cheap intersection estimate of N huge (billions) sets, using redis, if I'm willing to sacrifice space (and to a small degree, accuracy)?
Read this paper some time back. Will probably answer most of your questions. Inclusion Principle inevitably compounds error margins a large number of sets. Min-Hash approach would be the way to go.
http://tech.adroll.com/media/hllminhash.pdf
There is a third strategy to estimate the intersection size of any two sets given as HyperLogLog sketches: Maximum likelihood estimation.
For more details see the paper available at
http://oertl.github.io/hyperloglog-sketch-estimation-paper/.

Who knows the computational complexity of the function quadprog in MATLAB?

The QP problem is convex. For Wiki, the problem can be solved in polynomial time.
But what exactly is the order?
That is an interesting question with (in my opinion) no clear answer. I am going to assume your problem is convex and you are interested in run-time complexity (as opposed to Iteration complexity).
As you may know, QuadProg is not one algorithm but rather, a generic name for something that solves Quadratic problems. It uses a set of algorithms underneath viz. Interior Point (Default), Trust-Region and Active-Set. Source.
Depending upon what you choose, each of these algorithms will have its own complexity analysis. For Trust-Region and Active-Set methods, the complexity analysis is extremely hard. In fact, Active-Set methods are not polynomial to begin with. Counterexamples exist where Active-Set methods take exponential "time" to converge (This is true also for the Simplex Method for Linear Programs). Source.
Now, assuming that you choose Interior Point methods, the answer is still not straightforward because there are various flavours of these methods. When Karmarkar first proposed this method, it was the first known polynomial algorithm for solving Linear Programs and it had a complexity of O(n^3.5). Source. These bounds were improved quite a lot later. However, this is for Linear Programs.
Finally, to answer your question, Ye and Tse proved in 1989 that we can have an Interior Point method with complexity O(n^3). However, whether MATLAB uses this exact flavor of Interior Point method is a little tricky to know but O(n^3) would be my best guess.
Of course, my answer is rather theoretical; if you want to empirically test it out, you can do so by gradually increasing the number of variables and plotting the CPU time required to get an estimate.

Solving Ax=b where A is too big to be stored in a single array

Problem: A is square, full rank, sparse and banded. It has way too many elements to be stored as a single matrix in Matlab (at least ~4.6*1018 and ideally ~1040, both of which exceed max array size. EDIT: A is stored as sparse, and the problem is not with limited memory but with limited number of elements). Therefore I have to store it as a collection of smaller arrays (rows/diagonals/columns/blocks).
Looking for: a way to solve Ax=b, with A given as a collection of smaller arrays. Ideally in Matlab but not a must.
Alternatively, if not in Matlab: maybe there's a program that can store and solve such a big A?
Found so far: methods if A is tri/pentadiagonal, but my A has N diagonals. Also found something about partitioning A to blocks, but couldn't find a way to then solve a linear system with these blocks.
p.s. The system is 64-bit.
Thanks everyone!
Not using Matlab would allow you to store larger arrays. ROOT is an open source framework developed at CERN that has C++ and Python interfaces and a variety of solvers. It is also capable of handling huge datasets and has a variety of visualization and analysis tools as well.
If you are interested in writing C or Fortran BLAS(Basic Linear Algebra Subroutines) and CBLAS would be good options. There are many open source and proprietary implementations of BLAS that should be available for most Linux/UNIX distributions. There are also plenty of examples showing how to use the BLAS subroutines in C and Fortran code available online.
If you have access to MATLAB's Parallel Computing Toolbox together with MATLAB Distributed Computing Server, you may be able to store A as a distributed array, in other words a single array whose elements are distributed across the memories of multiple machines in a cluster. You can call MATLAB's backslash command directly on a distributed array, and MATLAB handles the parallelization for you.
I wanted to put this as a comment, but I think it is better to state it as an answer.
You have a serious problem. It is not only a problem of indexing, it is also a problem of memory: 4.6x10^18 is huge. That is 4.6 exa elements. If you store them as real single precision, you need 4x4.6 exabyte of memory. A computer which such a huge memory, does not yet exists to my knowledge. You will need to gather all the storage (hard disk, not RAM) of a significant proportion of all computers in the world to store such a matrix. Think about it. Going to 10^40 elements is nearly impractical for the time being. With your 64 bit computers, the 64 bit address space can bearly address 4.6x10^18 elements. 64 bits address (or integer) makes it possible to directly index 2^64 elements which is roughly 16x10^18. So you have to think twice.
Going back to the problem itself, there are chances that you can turn your matrix into an implicit operator. By implicit operator, I mean, you do not need to store it, because it has a pattern that you know how to reproduce, or you can apply it to a vector without actually forming the matrix. If you have the matrix in hand, you are very likely in this situation, considering what I said above.
If that is the case, to solve your problem, you simply need to use an iterative solver and provide a black box that does your matrix multiplication. Going to other directions might be a waste of your time.

How many and which parents should we select for crossover in genetic algorithm

I have read many tutorials, papers and I understood the concept of Genetic Algorithm, but I have some problems to implement the problem in Matlab.
In summary, I have:
A chromosome containing three genes [ a b c ] with each gene constrained by some different limits.
Objective function to be evaluated to find the best solution
What I did:
Generated random values of a, b and c, say 20 populations. i.e
[a1 b1 c1] [a2 b2 c2]…..[a20 b20 c20]
At each solution, I evaluated the objective function and ranked the solutions from best to worst.
Difficulties I faced:
Now, why should we go for crossover and mutation? Is the best solution I found not enough?
I know the concept of doing crossover (generating random number, probability…etc) but which parents and how many of them will be selected to do crossover or mutation?
Should I do the crossover for the entire 20 solutions (parents) or only two of them?
Generally a Genetic Algorithm is used to find a good solution to a problem with a huge search space, where finding an absolute solution is either very difficult or impossible. Obviously, I don't know the range of your values but since you have only three genes it's likely that a good solution will be found by a Genetic Algorithm (or a simpler search strategy at that) without any additional operators. Selection and Crossover is usually carried out on all chromosome in the population (although it's not uncommon to carry some of the best from each generation forward as is). The general idea is that the fitter chromosomes are more likely to be selected and undergo crossover with each other.
Mutation is usually used to stop the Genetic Algorithm prematurely converging on a non-optimal solution. You should analyse the results without mutation to see if it's needed. Mutation is usually run on the entire population, at every generation, but with a very small probability. Giving every gene 0.05% chance that it will mutate isn't uncommon. You usually want to give a small chance of mutation, without it completely overriding the results of selection and crossover.
As has been suggested I'd do a lit bit more general background reading on Genetic Algorithms to give a better understanding of its concepts.
Sharing a bit of advice from 'Practical Neural Network Recipies in C++' book... It is a good idea to have a significantly larger population for your first epoc, then your likely to include features which will contribute to an acceptable solution. Later epocs which can have smaller populations will then tune and combine or obsolete these favourable features.
And Handbook-Multiparent-Eiben seems to indicate four parents are better than two. However bed manufactures have not caught on to this yet and seem to only produce single and double-beds.

What's a genetic algorithm that would produce interesting/surprising results and not have a boring/obvious end point?

I find genetic algorithm simulations like this to be incredibly entrancing and I think it'd be fun to make my own. But the problem with most simulations like this is that they're usually just hill climbing to a predictable ideal result that could have been crafted with human guidance pretty easily. An interesting simulation would have countless different solutions that would be significantly different from each other and surprising to the human observing them.
So how would I go about trying to create something like that? Is it even reasonable to expect to achieve what I'm describing? Are there any "standard" simulations (in the sense that the game of life is sort of standardized) that I could draw inspiration from?
Depends on what you mean by interesting. That's a pretty subjective term. I once programmed a graph analyzer for fun. The program would first let you plot any f(x) of your choice and set the bounds. The second step was creating a tree holding the most common binary operators (+-*/) in a random generated function of x. The program would create a pool of such random functions, test how well they fit to the original curve in question, then crossbreed and mutate some of the functions in the pool.
The results were quite cool. A totally weird function would often be a pretty good approximation to the query function. Perhaps not the most useful program, but fun nonetheless.
Well, for starters that genetic algorithm is not doing hill-climbing, otherwise it would get stuck at the first local maxima/minima.
Also, how can you say it doesn't produce surprising results? Look at this vehicle here for example produced around generation 7 for one of the runs I tried. It's a very old model of a bicycle. How can you say that's not a surprising result when it took humans millennia to come up with the same model?
To get interesting emergent behavior (that is unpredictable yet useful) it is probably necessary to give the genetic algorithm an interesting task to learn and not just a simple optimisation problem.
For instance, the Car Builder that you referred to (although quite nice in itself) is just using a fixed road as the fitness function. This makes it easy for the genetic algorithm to find an optimal solution, however if the road would change slightly, that optimal solution may not work anymore because the fitness of a solution may have grown dependent on trivially small details in the landscape and not be robust to changes to it. In real, cars did not evolve on one fixed test road either but on many different roads and terrains. Using an ever changing road as the (dynamic) fitness function, generated by random factors but within certain realistic boundaries for slopes etc. would be a more realistic and useful fitness function.
I think EvoLisa is a GA that produces interesting results. In one sense, the output is predictable, as you are trying to match a known image. On the other hand, the details of the output are pretty cool.