Custom scalding tap (or Spark equivalent) - scala

I am trying to dump some data that I have on a Hadoop cluster, usually in HBase, with a custom file format.
What I would like to do is more or less the following:
start from a distributed list of records, such as a Scalding pipe or similar
group items by some computed function
make so that items belonging to the same group reside on the same server
on each group, apply a transformation - that involves sorting - and write the result on disk. In fact I need to write a bunch of MapFile - which are essentially sorted SequenceFile, plus an index.
I would like to implement the above with Scalding, but I am not sure how to do the last step.
While of course one cannot write sorted data in a distributed fashion, it should still be doable to split data into chunks and then write each chunk sorted locally. Still, I cannot find any implementation of MapFile output for map-reduce jobs.
I recognize it is a bad idea to sort very large data, and this is the reason even on a single server I plan to split data into chunks.
Is there any way to do something like that with Scalding? Possibly I would be ok with using Cascading directly, or really an other pipeline framework, such as Spark.

Using Scalding (and the underlying Map/Reduce) you will need to use the TotalOrderPartitioner, which does pre-sampling to create appropriate buckets/splits of the input data.
Using Spark will speed up due to the faster access paths to the disk data. However it will still require shuffles to disk/hdfs so it will not be like orders of magnitude better.
In Spark you would use a RangePartitioner, which takes the number of partitions and an RDD:
val allData = sc.hadoopRdd(paths)
val partitionedRdd = sc.partitionBy(new RangePartitioner(numPartitions, allData)
val groupedRdd = partitionedRdd.groupByKey(..).
// apply further transforms..

Related

Best practice in Spark to filter dataframe, execute different actions on resulted dataframes and then union the new dataframes back

Since I am new to Spark I would like to ask a question about a pattern that I am using in Spark but don't know if it's a bad practice ( splitting a dataframe in two based on a filter, execute different actions on them and then joining them back ).
To give an example, having dataframe df:
val dfFalse = df.filter(col === false).distinct()
val dfTrue = df.filter(col === true).join(otherDf, Seq(id), "left_anti").distinct()
val newDf = dfFalse union dfTrue
Since my original dataframe has milions of rows I am curious if this filtering twice is a bad practice and I should use some other pattern in Spark which I may not be aware of. In other cases I even need to do 3,4 filters and then apply different actions to individual data frames and then union them all back.
Kind regards,
There are several key points to take into account when you start to use Spark to process big amounts of data in order to analyze our performance:
Spark parallelism depends of the number of partitions that you have in your distributed memory representations(RDD or Dataframes). That means that the process(Spark actions) will be executed in parallel across the cluster. But note that there are two main different kind of transformations: Narrow transformations and wide transformations. The former represent operations that will be executed without shuffle, so the data don´t need to be reallocated in different partitions thus avoiding data transfer among workers. Consider that if you what to perform a distinct by a specific key Spark must reorganize the data in order to detect the duplicates. Take a look to the doc.
Regarding doing more or less filter transformations:
Spark is based on a lazy evaluation model, it means that all the transformations that you executes on a dataframe are not going to be executed unless you call an action, for example a write operation. And the Spark optimizer evaluates your transformations in order to create an optimized execution plan. So, if you have five or six filter operations it will never traverse the dataframe six times(in contrast to other dataframe frameworks). The optimizer will take your filtering operations and will create one. Here some details.
So have in mind that Spark is a distributed in memory data processor and it is a must to know these details because you can spawn hundreds of cores over hundred of Gbs.
The efficiency of this approach highly depends on the ability to reduce the amount of the overlapped data files that are scanned by both the splits.
I will focus on two techniques that allow data-skipping:
Partitions - if the predicates are based on a partitioned column, only the necessary data will be scanned, based on the condition. In your case, if you split the original dataframe into 2 based on a partitioned column filtering, each dataframe will scan only the corresponding portion of the data. In this case, your approach will be perform really well as no data will be scanned twice.
Filter/predicate pushdown - data stored in a format supporting filter pushdown (Parquet for example) allows reading only the files that contains records with values matching the condition. In case that the values of the filtered column are distributed across many files, the filter pushdown will be inefficient since the data is skipped on a file basis and if a certain file contains values for both the splits, it will be scanned twice. Writing the data sorted by the filtered column might improve the efficiency of the filter pushdown (on read) by gathering the same values into a fewer amount of files.
As long as you manage to split your dataframe, using the above techniques, and minimize the amount of the overlap between the splits, this approach will be more efficient.

Map on dataframe takes too long [duplicate]

How can I force Spark to execute a call to map, even if it thinks it does not need to be executed due to its lazy evaluation?
I have tried to put cache() with the map call but that still doesn't do the trick. My map method actually uploads results to HDFS. So, its not useless, but Spark thinks it is.
Short answer:
To force Spark to execute a transformation, you'll need to require a result. Sometimes a simple count action is sufficient.
TL;DR:
Ok, let's review the RDD operations.
RDDs support two types of operations:
transformations - which create a new dataset from an existing one.
actions - which return a value to the driver program after running a computation on the dataset.
For example, map is a transformation that passes each dataset element through a function and returns a new RDD representing the results. On the other hand, reduce is an action that aggregates all the elements of the RDD using some function and returns the final result to the driver program (although there is also a parallel reduceByKey that returns a distributed dataset).
All transformations in Spark are lazy, in that they do not compute their results right away.
Instead, they just remember the transformations applied to some base dataset (e.g. a file). The transformations are only computed when an action requires a result to be returned to the driver program. This design enables Spark to run more efficiently – for example, we can realize that a dataset created through map will be used in a reduce and return only the result of the reduce to the driver, rather than the larger mapped dataset.
By default, each transformed RDD may be recomputed each time you run an action on it. However, you may also persist an RDD in memory using the persist (or cache) method, in which case Spark will keep the elements around on the cluster for much faster access the next time you query it. There is also support for persisting RDDs on disk, or replicated across multiple nodes.
Conclusion
To force Spark to execute a call to map, you'll need to require a result. Sometimes a count action is sufficient.
Reference
Spark Programming Guide.
Spark transformations only describe what has to be done. To trigger an execution you need an action.
In your case there is a deeper problem. If goal is to create some kind of side effect, like storing data on HDFS, the right method to use is foreach. It is both an action and has a clean semantics. What is also important, unlike map, it doesn't imply referential transparency.

Spark: Is it possible to load an RDD from multiple files in different formats?

I have an heterogeneously-formatted input of files, batch mode.
I want to run a batch over a number of files. These files are of different formats, and they will have different mappings to normalize data (e.g. extract fields with different schema names or positions in the records, to a standard naming).
Given the tabular nature of the data, I'm considering using Dataframes (cannot use datasets due to the Spark version I'm bound to).
In order to apply different extraction logic to each file - do they need to be loaded each file in a separate dataframe, then apply extraction logic (extraction of some files, a process which is different per each file type, configured in terms of e.g. CSV/JSON/XML, position of fields to select (CSV), name of field to select (JSON), etc.), and then join datasets?
That would force me to iterate files, and act on each dataframe separately, and join dataframes afterwards; instead of applying the same (configurable) logic.
I know I could make it with RDD, i.e. loading all files into the RDD, emitting PairRDD[fileId, record], and then run a map where you would look the fileId to get the configuration to apply to that record, which tells you which logic to apply.
I'd rather use Dataframes, for all of the niceties it offers over raw RDDS, in terms of performance, simplicity and parsing.
Is there a better way to use Dataframes to address this problem than the one already explained? Any suggestions or misconceptions I may have?
I'm using Scala, though it should not matter to this problem.

(Why) do we need to call cache or persist on a RDD

When a resilient distributed dataset (RDD) is created from a text file or collection (or from another RDD), do we need to call "cache" or "persist" explicitly to store the RDD data into memory? Or is the RDD data stored in a distributed way in the memory by default?
val textFile = sc.textFile("/user/emp.txt")
As per my understanding, after the above step, textFile is a RDD and is available in all/some of the node's memory.
If so, why do we need to call "cache" or "persist" on textFile RDD then?
Most RDD operations are lazy. Think of an RDD as a description of a series of operations. An RDD is not data. So this line:
val textFile = sc.textFile("/user/emp.txt")
It does nothing. It creates an RDD that says "we will need to load this file". The file is not loaded at this point.
RDD operations that require observing the contents of the data cannot be lazy. (These are called actions.) An example is RDD.count — to tell you the number of lines in the file, the file needs to be read. So if you write textFile.count, at this point the file will be read, the lines will be counted, and the count will be returned.
What if you call textFile.count again? The same thing: the file will be read and counted again. Nothing is stored. An RDD is not data.
So what does RDD.cache do? If you add textFile.cache to the above code:
val textFile = sc.textFile("/user/emp.txt")
textFile.cache
It does nothing. RDD.cache is also a lazy operation. The file is still not read. But now the RDD says "read this file and then cache the contents". If you then run textFile.count the first time, the file will be loaded, cached, and counted. If you call textFile.count a second time, the operation will use the cache. It will just take the data from the cache and count the lines.
The cache behavior depends on the available memory. If the file does not fit in the memory, for example, then textFile.count will fall back to the usual behavior and re-read the file.
I think the question would be better formulated as:
When do we need to call cache or persist on a RDD?
Spark processes are lazy, that is, nothing will happen until it's required.
To quick answer the question, after val textFile = sc.textFile("/user/emp.txt") is issued, nothing happens to the data, only a HadoopRDD is constructed, using the file as source.
Let's say we transform that data a bit:
val wordsRDD = textFile.flatMap(line => line.split("\\W"))
Again, nothing happens to the data. Now there's a new RDD wordsRDD that contains a reference to testFile and a function to be applied when needed.
Only when an action is called upon an RDD, like wordsRDD.count, the RDD chain, called lineage will be executed. That is, the data, broken down in partitions, will be loaded by the Spark cluster's executors, the flatMap function will be applied and the result will be calculated.
On a linear lineage, like the one in this example, cache() is not needed. The data will be loaded to the executors, all the transformations will be applied and finally the count will be computed, all in memory - if the data fits in memory.
cache is useful when the lineage of the RDD branches out. Let's say you want to filter the words of the previous example into a count for positive and negative words. You could do this like that:
val positiveWordsCount = wordsRDD.filter(word => isPositive(word)).count()
val negativeWordsCount = wordsRDD.filter(word => isNegative(word)).count()
Here, each branch issues a reload of the data. Adding an explicit cache statement will ensure that processing done previously is preserved and reused. The job will look like this:
val textFile = sc.textFile("/user/emp.txt")
val wordsRDD = textFile.flatMap(line => line.split("\\W"))
wordsRDD.cache()
val positiveWordsCount = wordsRDD.filter(word => isPositive(word)).count()
val negativeWordsCount = wordsRDD.filter(word => isNegative(word)).count()
For that reason, cache is said to 'break the lineage' as it creates a checkpoint that can be reused for further processing.
Rule of thumb: Use cache when the lineage of your RDD branches out or when an RDD is used multiple times like in a loop.
Do we need to call "cache" or "persist" explicitly to store the RDD data into memory?
Yes, only if needed.
The RDD data stored in a distributed way in the memory by default?
No!
And these are the reasons why :
Spark supports two types of shared variables: broadcast variables, which can be used to cache a value in memory on all nodes, and accumulators, which are variables that are only “added” to, such as counters and sums.
RDDs support two types of operations: transformations, which create a new dataset from an existing one, and actions, which return a value to the driver program after running a computation on the dataset. For example, map is a transformation that passes each dataset element through a function and returns a new RDD representing the results. On the other hand, reduce is an action that aggregates all the elements of the RDD using some function and returns the final result to the driver program (although there is also a parallel reduceByKey that returns a distributed dataset).
All transformations in Spark are lazy, in that they do not compute their results right away. Instead, they just remember the transformations applied to some base dataset (e.g. a file). The transformations are only computed when an action requires a result to be returned to the driver program. This design enables Spark to run more efficiently – for example, we can realize that a dataset created through map will be used in a reduce and return only the result of the reduce to the driver, rather than the larger mapped dataset.
By default, each transformed RDD may be recomputed each time you run an action on it. However, you may also persist an RDD in memory using the persist (or cache) method, in which case Spark will keep the elements around on the cluster for much faster access the next time you query it. There is also support for persisting RDDs on disk, or replicated across multiple nodes.
For more details please check the Spark programming guide.
Below are the three situations you should cache your RDDs:
using an RDD many times
performing multiple actions on the same RDD
for long chains of (or very expensive) transformations
Adding another reason to add (or temporarily add) cache method call.
for debug memory issues
with cache method, spark will give debugging informations regarding the size of the RDD. so in the spark integrated UI, you will get RDD memory consumption info. and this proved very helpful diagnosing memory issues.

Apache spark streaming - cache dataset for joining

I'm considering using Apache Spark streaming for some real-time work but I'm not sure how to cache a dataset for use in a join/lookup.
The main input will be json records coming from Kafka that contain an Id, I want to translate that id into a name using a lookup dataset. The lookup dataset resides in Mongo Db but I want to be able to cache it inside the spark process as the dataset changes very rarely (once every couple of hours) so I don't want to hit mongo for every input record or reload all the records in every spark batch but I need to be able to update the data held in spark periodically (e.g. every 2 hours).
What is the best way to do this?
Thanks.
I've thought long and hard about this myself. In particular I've wondered is it possible to actually implement a database DB in Spark of sorts.
Well the answer is kind of yes. First you want a program that first caches the main data set into memory, then every couple of hours does an optimized join-with-tiny to update the main data set. Now apparently Spark will have a method that does a join-with-tiny (maybe it's already out in 1.0.0 - my stack is stuck on 0.9.0 until CDH 5.1.0 is out).
Anyway, you can manually implement a join-with-tiny, by taking the periodic bi-hourly dataset and turning it into a HashMap then broadcasting it as a broadcast variable. What this means is that the HashMap will be copied, but only once per node (compare this with just referencing the Map - it would be copied once per task - a much greater cost). Then you take your main dataset and add on the new records using the broadcasted map. You can then periodically (nightly) save to hdfs or something.
So here is some scruffy pseudo code to elucidate:
var mainDataSet: RDD[KeyType, DataType] = sc.textFile("/path/to/main/dataset")
.map(parseJsonAndGetTheKey).cache()
everyTwoHoursDo {
val newData: Map[KeyType, DataType] = sc.textFile("/path/to/last/two/hours")
.map(parseJsonAndGetTheKey).toarray().toMap
broadcast(newData)
val mainDataSetNew =
mainDataSet.map((key, oldValue) => (key,
newData.get(key).map(newDataValue =>
update(oldValue, newDataValue))
.getOrElse(oldValue)))
.cache()
mainDataSetNew.someAction() // to force execution
mainDataSet.unpersist()
mainDataSet = mainDataSetNew
}
I've also thought that you could be very clever and use a custom partioner with your own custom index, and then use a custom way of updating the partitions so that each partition itself holds a submap. Then you can skip updating partitions that you know won't hold any keys that occur in the newData, and also optimize the updating process.
I personally think this is a really cool idea, and the nice thing is your dataset is already ready in memory for some analysis / machine learning. The down side is your kinda reinventing the wheel a bit. It might be a better idea to look at using Cassandra as Datastax is partnering with Databricks (people who make Spark) and might end up supporting some kind of thing like this out of box.
Further reading:
http://spark.apache.org/docs/latest/programming-guide.html#broadcast-variables
http://www.datastax.com/2014/06/datastax-unveils-dse-45-the-future-of-the-distributed-database-management-system
Here is a fairly simple work-flow:
For each batch of data:
Convert the batch of JSON data to a DataFrame (b_df).
Read the lookup dataset from MongoDB as a DataFrame (m_df). Then cache, m_df.cache()
Join the data using b_df.join(m_df, "join_field")
Perform your required aggregation and then write to a data source.