I need some help in analayzing an expression in lazy evalutation :
(let ((x (box 1))) (set-box! x (+ (unbox x) 5)) (unbox x))
in app-eval the result would be 6
but i think in lazy evalutationl it will be 1.
thanks in advance for any help!
Related
I have this curry function:
(define curry
(lambda (f) (lambda (a) (lambda (b) (f a b)))))
I think it's like (define curry (f a b)).
my assignment is to write a function consElem2All using curry,which should work like
(((consElem2All cons) 'b) '((1) (2 3) (4)))
>((b 1) (b 2 3) (b 4))
I have wrote this function in a regular way:
(define (consElem2All0 x lst)
(map (lambda (elem) (cons x elem)) lst))
but still don't know how to transform it with curry. Can anyone help me?
thanks in advance
bearzk
You should begin by reading about currying. If you don't understand what curry is about, it may be really hard to use it... In your case, http://www.engr.uconn.edu/~jeffm/Papers/curry.html may be a good start.
One very common and interesting use of currying is with functions like reduce or map (for themselves or their arguments).
Let's define two currying operators!
(define curry2 (lambda (f) (lambda (arg1) (lambda (arg2) (f arg1 arg2)))))
(define curry3 (lambda (f) (lambda (arg1) (lambda (arg2) (lambda (arg3) (f arg1 arg2 arg3))))))
Then a few curried mathematical functions:
(define mult (curry2 *))
(define double (mult 2))
(define add (curry2 +))
(define increment (add 1))
(define decrement (add -1))
And then come the curried reduce/map:
(define creduce (curry3 reduce))
(define cmap (curry2 map))
Using them
First reduce use cases:
(define sum ((creduce +) 0))
(sum '(1 2 3 4)) ; => 10
(define product (creduce * 1))
(product '(1 2 3 4)) ; => 24
And then map use cases:
(define doubles (cmap double))
(doubles '(1 2 3 4)) ; => (2 4 6 8)
(define bump (cmap increment))
(bump '(1 2 3 4)) ; => (2 3 4 5)
I hope that helps you grasp the usefulness of currying...
So your version of curry takes a function with two args, let's say:
(define (cons a b) ...)
and turns that into something you can call like this:
(define my-cons (curry cons))
((my-cons 'a) '(b c)) ; => (cons 'a '(b c)) => '(a b c)
You actually have a function that takes three args. If you had a curry3 that managed 3-ary functions, you could do something like:
(define (consElem2All0 the-conser x lst) ...)
(like you did, but allowing cons-like functions other than cons to be used!)
and then do this:
(define consElem2All (curry3 consElem2All0))
You don't have such a curry3 at hand. So you can either build one, or work around it by "manually" currying the extra variable yourself. Working around it looks something like:
(define (consElem2All0 the-conser)
(lambda (x lst) ...something using the-conser...))
(define (consElem2All the-conser)
(curry (consElem2All0 the-conser)))
Note that there's one other possible use of curry in the map expression itself, implied by you wrapping a lambda around cons to take the element to pass to cons. How could you curry x into cons so that you get a one-argument function that can be used directly to map?...
Perhaps better use a generalized version:
(define (my-curry f)
(lambda args
(cond ((= (length args) 1)
(lambda lst (apply f (cons (car args) lst))))
((>= (length args) 2)
(apply f (cons (car args) (cdr args)))))))
(define (consElem2All0 x lst)
(map ((curry cons) x) lst))
This code:
(let ((x 2)) (let((f (lambda (n)(+ x n )))) (let (( x 17)) (f 3 ))))
is giving me the answer 5, why isn't the x value updated from 2 to 17?
The magic of Lexical Scoping.
Here's a version with comments:
(let ((x 2))
; x is bound to 2
(let ((f (lambda (n) (+ x n))))
; f is bound to a function that adds `x` and a number `n`
(let ((x 17)) (f 3))))
; Bind `x` to 17, call (f 3) in the body.
In the third line, the name x is bound to 17. But the previous let already bound f to add 2 and a fresh number n. This demonstrates the same idea:
(let ((f (λ (n) (+ 2 n))))
(let ((x 17)) (f 3)))
Your later binding of x to 17 is irrelevant because x is bound to 2 in the environment that f is written in. When evaluating function calls, always look at the function definition's environment, not the function call's.
I would like to write a macro to create shorthand syntax for hiding more verbose lambda expressions, but I'm struggling to understand how to write macros (which I realize is an argument against using them).
Given this example:
(define alist-example
'((x 1 2 3) (y 4 5 6) (z 7 8 9)))
(define ($ alist name)
(cdr (assoc name alist)))
((lambda (a) (map (lambda (x y z) (+ x y z)) ($ a 'x) ($ a 'y) ($ a 'z))) alist-example)
((lambda (a) (map (lambda (y) (/ y (apply max ($ a 'y)))) ($ a 'y))) alist-example)
I would like to write a macro, with-alist, that would allow me to write the last two expressions similar to this:
(with-alist alist-example (+ x y z))
(with-alist alist-example (/ y (apply max y)))
Any advice or suggestions?
Here is a syntax-rules solution based on the feedback that I received in the other answer and comments:
(define ($ alist name)
(cdr (assoc name alist)))
(define-syntax with-alist
(syntax-rules ()
[(_ alist names expr)
(let ([alist-local alist])
(apply map (lambda names expr)
(map (lambda (name) ($ alist-local name)) (quote names))))]))
Here is some example usage:
> (define alist-example
'((x 1 2 3) (y 4 5 6) (z 7 8 9)))
> (with-alist alist-example (x) (+ x 2))
(3 4 5)
> (with-alist alist-example (x y) (+ x y))
(5 7 9)
> (with-alist alist-example (x y z) (+ x y z))
(12 15 18)
This answer stops short of solving the more complicated example, (with-alist alist-example (/ y (apply max y))), in my question, but I think this is a reasonable approach for my purposes:
> (with-alist alist-example (y) (/ y (apply max ($ alist-example 'y))))
(2/3 5/6 1)
EDIT: After some additional tinkering, I arrived at a slightly different solution that I think will provide more flexibility.
My new macro, npl, expands shorthand expressions into a list of names and procedures.
(define-syntax npl
(syntax-rules ()
[(_ (names expr) ...)
(list
(list (quote names) ...)
(list (lambda names expr) ...))]))
The output of this macro is passed to a regular procedure, with-list-map, that contains most the core functionality in the with-alist macro above.
(define (with-alist-map alist names-proc-list)
(let ([names-list (car names-proc-list)]
[proc-list (cadr names-proc-list)])
(map (lambda (names proc)
(apply map proc
(map (lambda (name) ($ alist name)) names)))
names-list proc-list)))
The 3 examples of with-alist usage above can be captured in a single call to with-alist-map.
> (with-alist-map alist-example
(npl ((x) (+ x 2))
((x y) (+ x y))
((x y z) (+ x y z))))
((3 4 5) (5 7 9) (12 15 18))
The immediate problem I see is that there is no way to tell which bindings to pick. Eg. is apply one of the elements in the alist or is it a global variable? That depends. I suggest you do:
(with-alist ((x y z) '((x 1 2 3) (y 4 5 6) (z 7 8 9)))
(+ x y z))
(let ((z 10))
(with-alist ((x y) alist-example)
(+ x y z)))
And that it should translate to:
(let ((tmp '((x 1 2 3) (y 4 5 6) (z 7 8 9))))
(apply map (lambda (x y z) (+ x y z))
(map (lambda (name) ($ tmp name)) '(x y z))))
(let ((z 10))
(let ((tmp alist-example))
(apply map (lambda (x y) (+ x y z))
(map (lambda (name) ($ tmp name)) '(x y)))))
This is then straight forward to do with syntax-rules. Eg. make a pattern and write the replacement. Good luck.
This question already has answers here:
Confused by the difference between let and let* in Scheme
(2 answers)
Closed 8 years ago.
(define x 2)
(let ((x 1) (y (+ x 1))) (+ x y))
you get 4;
(let* ((x 1) (y (+ x 1))) (+ x y))
you get 3.
I do not understand how the let thing works. Could someone please explain, i'm new to computer science thanks
(let ((x 0) (z x))
...)
Is equivalent to:
((lambda (x z) ...) 0 x)
Perhaps in the anonymous procedure call you can see that when the arguments are evaluated the variable inside the body does not exist yet, but inside the body x is 0 and the previous x is shadowed in the whole body but accesible as z.
(let* ((x 0) (z x))
...)
Which is equivalent to:
(let ((x 0))
(let ((z x))
...))
Looking at this you see right away that x gets set to 0 and shadows any other x at the time z gets bound.
Imagine you want to calculate the hypothenus og a triangle:
(let ((hypotenuse (sqrt (+ (square a) (square b)))))
...)
You want to split it up a little so you change it to a let* like this:
(let* ((sqa (square a))
(sqb (square b))
(hypotenuse (sqrt sqa sqb)))
...)
If you woudl have used let then sqa and sqb wuldn't be available!
The rule of thumb is to use let and change it to a let* when you need to reference something bound in the same let. Be careful to not shadow variables you are using later.
I am confused about the difference between '(()) and (cons null null) in scheme.
The code below show that b and c are completely the same thing.
(define (dup2 x)
(let ((d '(())))
(set-car! d (car x))
(set-cdr! d (cdr x))
d))
(define a '(1 2))
(define b (dup2 a))
(define c (dup2 a))
(set-car! b 2)
> c ;; --> (2 2)
However, when I used dup instead of dup2:
(define (dup x)
(let ((d (cons null null)))
(set-car! d (car x))
(set-cdr! d (cdr x))
d))
(define a '(1 2))
(define b (dup a))
(define c (dup a))
(set-car! b 2)
> c ;; --> (1 2)
Variable b and c are different. I have done some experiments, but I haven't understand yet.
The value of d in the first implementation is literal data, and is modified with undefined consequences. To highlight what's happening, consider the following code:
(define (incorrect-list-null-and-x x)
(let ((l '(()))) ; a list of the form (() . ())
(set-cdr! l (cons x (cdr l))) ; (cdr l) is (), so (cons x (cdr l)) should be (x . ()) == (x), right?
; and now l should be (() . (x . ())) == (() x), right?
l))
The expected result is that (incorrect-list-null-and-x n) should return a list of the form (() n), and it does the first time, but successive calls are still accessing the same data:
(incorrect-list-null-and-x 1) ;=> (() 1)
(incorrect-list-null-and-x 2) ;=> (() 2 1)
(incorrect-list-null-and-x 3) ;=> (() 3 2 1)
(incorrect-list-null-and-x 4) ;=> (() 4 3 2 1)
The same problem manifests itself a bit differently in your dup2. Every value returned from dup2 is actually the same pair:
(let* ((x (dup2 (cons 1 2)))
(y (dup2 (cons 3 4))))
(display x)
(display y))
outputs:
(3 . 4)(3 . 4)
because the call (dup2 (cons 3 4)) modifies the same structure that was previously returned by (dup2 (cons 1 2)).
Data literals, like '(()), are meant to be read-only, and modifying it using set-car! or set-cdr! has undefined behaviour. For predictable behaviour, use the (cons '() '()) version if you want to use set-car! or set-cdr! on it.
In particular, cons creates a new cons cell, whereas a data literal usually won't.
Still, for the purposes of implementing dup, why are you using set-car! and set-cdr! anyway? Just use cons directly:
(define (dup x)
(cons (car x) (cdr x)))
In your first code snippet you use (d '(())) which ends up binding a literal to d. You then modify the literal which is generally undefined. In your second code snippet you use (d (cons null null)) which binds d to a newly created 'cons cell' which you then modify. There is no problem modifying that.
Note: you've not defined null. Perhaps you meant '()?