Related
What is the simplest way to convert a java.util.IdentityHashMap[A,B] into a subtype of scala.immutable.Map[A,B]? I need to keep keys separate unless they are eq.
Here's what I've tried so far:
scala> case class Example()
scala> val m = new java.util.IdentityHashMap[Example, String]()
scala> m.put(Example(), "first!")
scala> m.put(Example(), "second!")
scala> m.asScala // got a mutable Scala equivalent OK
res14: scala.collection.mutable.Map[Example,String] = Map(Example() -> first!, Example() -> second!)
scala> m.asScala.toMap // doesn't work, since toMap() removes duplicate keys (testing with ==)
res15: scala.collection.immutable.Map[Example,String] = Map(Example() -> second!)
Here's a simple implementation of identity map in Scala. In usage, it should be similar to standard immutable map.
Example usage:
val im = IdentityMap(
new String("stuff") -> 5,
new String("stuff") -> 10)
println(im) // IdentityMap(stuff -> 5, stuff -> 10)
Your case:
import scala.collection.JavaConverters._
import java.{util => ju}
val javaIdentityMap: ju.IdentityHashMap = ???
val scalaIdentityMap = IdentityMap.empty[String,Int] ++ javaIdentityMap.asScala
Implementation itself (for performance reasons, there may be some more methods that need to be overridden):
import scala.collection.generic.ImmutableMapFactory
import scala.collection.immutable.MapLike
import IdentityMap.{Wrapper, wrap}
class IdentityMap[A, +B] private(underlying: Map[Wrapper[A], B])
extends Map[A, B] with MapLike[A, B, IdentityMap[A, B]] {
def +[B1 >: B](kv: (A, B1)) =
new IdentityMap(underlying + ((wrap(kv._1), kv._2)))
def -(key: A) =
new IdentityMap(underlying - wrap(key))
def iterator =
underlying.iterator.map {
case (kw, v) => (kw.value, v)
}
def get(key: A) =
underlying.get(wrap(key))
override def size: Int =
underlying.size
override def empty =
new IdentityMap(underlying.empty)
override def stringPrefix =
"IdentityMap"
}
object IdentityMap extends ImmutableMapFactory[IdentityMap] {
def empty[A, B] =
new IdentityMap(Map.empty)
private class Wrapper[A](val value: A) {
override def toString: String =
value.toString
override def equals(other: Any) = other match {
case otherWrapper: Wrapper[_] =>
value.asInstanceOf[AnyRef] eq otherWrapper.value.asInstanceOf[AnyRef]
case _ => false
}
override def hashCode =
System.identityHashCode(value)
}
private def wrap[A](key: A) =
new Wrapper(key)
}
One way to handle this would be change what equality means for the class, e.g.
scala> case class Example() {
override def equals( that:Any ) = that match {
case that:AnyRef => this eq that
case _ => false
}
}
defined class Example
scala> val m = new java.util.IdentityHashMap[Example, String]()
m: java.util.IdentityHashMap[Example,String] = {}
scala> m.put(Example(), "first!")
res1: String = null
scala> m.put(Example(), "second!")
res2: String = null
scala> import scala.collection.JavaConverters._
import scala.collection.JavaConverters._
scala> m.asScala
res3: scala.collection.mutable.Map[Example,String] = Map(Example() -> second!, Example() -> first!)
scala> m.asScala.toMap
res4: scala.collection.immutable.Map[Example,String] = Map(Example() -> second!, Example() -> first!)
Or if you don't want to change equality for the class, you could make a wrapper.
Of course, this won't perform as well as a Map that uses eq instead of ==; it might be worth asking for one....
I'm doing a bit of Scala gymnastics where I have Seq[T] in which I try to find the "smallest" element. This is what I do right now:
val leastOrNone = seq.reduceOption { (best, current) =>
if (current.something < best.something) current
else best
}
It works fine, but I'm not quite satisfied - it's a bit long for such a simple thing, and I don't care much for "if"s. Using minBy would be much more elegant:
val least = seq.minBy(_.something)
... but min and minBy throw exceptions when the sequence is empty. Is there an idiomatic, more elegant way of finding the smallest element of a possibly empty list as an Option?
seq.reduceOption(_ min _)
does what you want?
Edit: Here's an example incorporating your _.something:
case class Foo(a: Int, b: Int)
val seq = Seq(Foo(1,1),Foo(2,0),Foo(0,3))
val ord = Ordering.by((_: Foo).b)
seq.reduceOption(ord.min) //Option[Foo] = Some(Foo(2,0))
or, as generic method:
def minOptionBy[A, B: Ordering](seq: Seq[A])(f: A => B) =
seq reduceOption Ordering.by(f).min
which you could invoke with minOptionBy(seq)(_.something)
Starting Scala 2.13, minByOption/maxByOption is now part of the standard library and returns None if the sequence is empty:
seq.minByOption(_.something)
List((3, 'a'), (1, 'b'), (5, 'c')).minByOption(_._1) // Option[(Int, Char)] = Some((1,b))
List[(Int, Char)]().minByOption(_._1) // Option[(Int, Char)] = None
A safe, compact and O(n) version with Scalaz:
xs.nonEmpty option xs.minBy(_.foo)
Hardly an option for any larger list due to O(nlogn) complexity:
seq.sortBy(_.something).headOption
Also, it is available to do like that
Some(seq).filter(_.nonEmpty).map(_.minBy(_.something))
How about this?
import util.control.Exception._
allCatch opt seq.minBy(_.something)
Or, more verbose, if you don't want to swallow other exceptions:
catching(classOf[UnsupportedOperationException]) opt seq.minBy(_.something)
Alternatively, you can pimp all collections with something like this:
import collection._
class TraversableOnceExt[CC, A](coll: CC, asTraversable: CC => TraversableOnce[A]) {
def minOption(implicit cmp: Ordering[A]): Option[A] = {
val trav = asTraversable(coll)
if (trav.isEmpty) None
else Some(trav.min)
}
def minOptionBy[B](f: A => B)(implicit cmp: Ordering[B]): Option[A] = {
val trav = asTraversable(coll)
if (trav.isEmpty) None
else Some(trav.minBy(f))
}
}
implicit def extendTraversable[A, C[A] <: TraversableOnce[A]](coll: C[A]): TraversableOnceExt[C[A], A] =
new TraversableOnceExt[C[A], A](coll, identity)
implicit def extendStringTraversable(string: String): TraversableOnceExt[String, Char] =
new TraversableOnceExt[String, Char](string, implicitly)
implicit def extendArrayTraversable[A](array: Array[A]): TraversableOnceExt[Array[A], A] =
new TraversableOnceExt[Array[A], A](array, implicitly)
And then just write seq.minOptionBy(_.something).
I have the same problem before, so I extends Ordered and implement the compare function.
here is example:
case class Point(longitude0: String, latitude0: String) extends Ordered [Point]{
def this(point: Point) = this(point.original_longitude,point.original_latitude)
val original_longitude = longitude0
val original_latitude = latitude0
val longitude = parseDouble(longitude0).get
val latitude = parseDouble(latitude0).get
override def toString: String = "longitude: " +original_longitude +", latitude: "+ original_latitude
def parseDouble(s: String): Option[Double] = try { Some(s.toDouble) } catch { case _ => None }
def distance(other: Point): Double =
sqrt(pow(longitude - other.longitude, 2) + pow(latitude - other.latitude, 2))
override def compare(that: Point): Int = {
if (longitude < that.longitude)
return -1
else if (longitude == that.longitude && latitude < that.latitude)
return -1
else
return 1
}
}
so if I have a seq of Point
I can ask for max or min method
var points = Seq[Point]()
val maxPoint = points.max
val minPoint = points.min
You could always do something like:
case class Foo(num: Int)
val foos: Seq[Foo] = Seq(Foo(1), Foo(2), Foo(3))
val noFoos: Seq[Foo] = Seq.empty
def minByOpt(foos: Seq[Foo]): Option[Foo] =
foos.foldLeft(None: Option[Foo]) { (acc, elem) =>
Option((elem +: acc.toSeq).minBy(_.num))
}
Then use like:
scala> minByOpt(foos)
res0: Option[Foo] = Some(Foo(1))
scala> minByOpt(noFoos)
res1: Option[Foo] = None
For scala < 2.13
Try(seq.minBy(_.something)).toOption
For scala 2.13
seq.minByOption(_.something)
In Haskell you'd wrap the minimumBy call as
least f x | Seq.null x = Nothing
| otherwise = Just (Seq.minimumBy f x)
I have an object with stores information about specific instances. For that, i would like to use a Map, but as the keys are not by-reference (they aren't, right?) but as hashes provided by the getHashCode method. For better understanding:
import collection.mutable._
import java.util.Random
object Foo {
var myMap = HashMap[AnyRef, Int]()
def doSomething(ar: AnyRef): Int = {
myMap.get(ar) match {
case Some(x) => x
case None => {
myMap += ar -> new Random().nextInt()
doSomething(ar)
}
}
}
}
object Main {
def main(args: Array[String]) {
case class ExampleClass(x: String);
val o1 = ExampleClass("test1")
val o2 = ExampleClass("test1")
println(o2 == o1) // true
println(o2 eq o1) // false
// I want the following two lines to yield different numbers
// and i do not have control over the classes, messing with their
// equals implementation is not possible.
println(Foo.doSomething(o1))
println(Foo.doSomething(o2))
}
}
In cases i have instances with the same hash code the "caching" for the random value will return the same value for both instances even those are not same. Which datastructed is used best in this situation?
Clarification/Edit
I know how this works normally, based on the hashCode and equals method. But that is exactly what I want to avoid. I updated my example to make that clearer. :)
EDIT: Based on clarifications to the question, you can create your own Map implementation, and override elemEquals().
The original implementation (in HashMap)
protected def elemEquals(key1: A, key2: A): Boolean = (key1 == key2)
Change this to:
protected def elemEquals(key1: A, key2: A): Boolean = (key1 eq key2)
class MyHashMap[A <: AnyRef, B] extends scala.collection.mutable.HashMap[A, B] {
protected override def elemEquals(key1: A, key2: A): Boolean = (key1 eq key2)
}
Note that to use eq, you need to restrict the key to be an AnyRef, or do a match in the elemEquals() method.
case class Foo(i: Int)
val f1 = new Foo(1)
val f2 = new Foo(1)
val map = new MyHashMap[Foo, String]()
map += (f1 -> "f1")
map += (f2 -> "f2")
map.get(f1) // Some(f1)
map.get(f2) // Some(f2)
--
Original answer
Map works with hashCode() and equals(). Have you implemented equals() correctly in your obejcts? Note that in Scala, == gets translated to a call to equals(). To get the same behaviour of == in Java, use the Scala operator eq
case class Foo(i: Int)
val f1 = new Foo(1)
val f2 = new Foo(1)
f1 == f2 // true
f1.equals(f2) // true
f1 eq f2 // false
val map = new MyHashMap (f1 -> "f1", f2 -> "f2")
map.get(f1) // Some("f2")
map.get(f2) // Some("f2")
Here, the case class implements equals() to be object equivalence, in this case:
f1.i == f1.i
You need to override equals() in your objects to include object equality, i.e something like:
override def equals(o: Any) = { o.asInstanceOf[AnyRef] eq this }
This should still work with the same hashCode().
You can also use IdentityHashMap together with scala.collection.JavaConversions.
Ah based on comment... You could use a wrapper that overrides equal to have reference semantics.
class EqWrap[T <: AnyRef](val value: T) {
override def hashCode() = if (value == null) 0 else value.hashCode
override def equals(a: Any) = a match {
case ref: EqWrap[_] => ref.value eq value
case _ => false
}
}
object EqWrap {
def apply[T <: AnyRef](t: T) = new EqWrap(t)
}
case class A(i: Int)
val x = A(0)
val y = A(0)
val map = Map[EqWrap[A], Int](EqWrap(x) -> 1)
val xx = map.get(EqWrap(x))
val yy = map.get(EqWrap(y))
//xx: Option[Int] = Some(1)
//yy: Option[Int] = None
Original answer (based on not understanding the question - I have to leave this so that the comment makes sense...)
Map already has this semantic (unless I don't understand your question).
scala> val x = A(0)
x: A = A(0)
scala> val y = A(0)
y: A = A(0)
scala> x == y
res0: Boolean = true // objects are equal
scala> x.hashCode
res1: Int = -2081655426
scala> y.hashCode
res2: Int = -2081655426 // same hash code
scala> x eq y
res3: Boolean = false // not the same object
scala> val map = Map(x -> 1)
map: scala.collection.immutable.Map[A,Int] = Map(A(0) -> 1)
scala> map(y)
res8: Int = 1 // return the mapping based on hash code and equal semantic
Recently, I wrote an iterator for a cartesian product of Anys, and started with a List of List, but recognized, that I can easily switch to the more abstract trait Seq.
I know, you like to see the code. :)
class Cartesian (val ll: Seq[Seq[_]]) extends Iterator [Seq[_]] {
def combicount: Int = (1 /: ll) (_ * _.length)
val last = combicount
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): Seq[_] = {
val res = combination (ll, iter)
iter += 1
res
}
def combination (xx: Seq [Seq[_]], i: Int): List[_] = xx match {
case Nil => Nil
case x :: xs => x (i % x.length) :: combination (xs, i / x.length)
}
}
And a client of that class:
object Main extends Application {
val illi = new Cartesian (List ("abc".toList, "xy".toList, "AB".toList))
// val ivvi = new Cartesian (Vector (Vector (1, 2, 3), Vector (10, 20)))
val issi = new Cartesian (Seq (Seq (1, 2, 3), Seq (10, 20)))
// val iaai = new Cartesian (Array (Array (1, 2, 3), Array (10, 20)))
(0 to 5).foreach (dummy => println (illi.next ()))
// (0 to 5).foreach (dummy => println (issi.next ()))
}
/*
List(a, x, A)
List(b, x, A)
List(c, x, A)
List(a, y, A)
List(b, y, A)
List(c, y, A)
*/
The code works well for Seq and Lists (which are Seqs), but of course not for Arrays or Vector, which aren't of type Seq, and don't have a cons-method '::'.
But the logic could be used for such collections too.
I could try to write an implicit conversion to and from Seq for Vector, Array, and such, or try to write an own, similar implementation, or write an Wrapper, which transforms the collection to a Seq of Seq, and calls 'hasNext' and 'next' for the inner collection, and converts the result to an Array, Vector or whatever. (I tried to implement such workarounds, but I have to recognize: it's not that easy. For a real world problem I would probably rewrite the Iterator independently.)
However, the whole thing get's a bit out of control if I have to deal with Arrays of Lists or Lists of Arrays and other mixed cases.
What would be the most elegant way to write the algorithm in the broadest, possible way?
There are two solutions. The first is to not require the containers to be a subclass of some generic super class, but to be convertible to one (by using implicit function arguments). If the container is already a subclass of the required type, there's a predefined identity conversion which only returns it.
import collection.mutable.Builder
import collection.TraversableLike
import collection.generic.CanBuildFrom
import collection.mutable.SeqLike
class Cartesian[T, ST[T], TT[S]](val ll: TT[ST[T]])(implicit cbf: CanBuildFrom[Nothing, T, ST[T]], seqLike: ST[T] => SeqLike[T, ST[T]], traversableLike: TT[ST[T]] => TraversableLike[ST[T], TT[ST[T]]] ) extends Iterator[ST[T]] {
def combicount (): Int = (1 /: ll) (_ * _.length)
val last = combicount - 1
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): ST[T] = {
val res = combination (ll, iter, cbf())
iter += 1
res
}
def combination (xx: TT[ST[T]], i: Int, builder: Builder[T, ST[T]]): ST[T] =
if (xx.isEmpty) builder.result
else combination (xx.tail, i / xx.head.length, builder += xx.head (i % xx.head.length) )
}
This sort of works:
scala> new Cartesian[String, Vector, Vector](Vector(Vector("a"), Vector("xy"), Vector("AB")))
res0: Cartesian[String,Vector,Vector] = empty iterator
scala> new Cartesian[String, Array, Array](Array(Array("a"), Array("xy"), Array("AB")))
res1: Cartesian[String,Array,Array] = empty iterator
I needed to explicitly pass the types because of bug https://issues.scala-lang.org/browse/SI-3343
One thing to note is that this is better than using existential types, because calling next on the iterator returns the right type, and not Seq[Any].
There are several drawbacks here:
If the container is not a subclass of the required type, it is converted to one, which costs in performance
The algorithm is not completely generic. We need types to be converted to SeqLike or TraversableLike only to use a subset of functionality these types offer. So making a conversion function can be tricky.
What if some capabilities can be interpreted differently in different contexts? For example, a rectangle has two 'length' properties (width and height)
Now for the alternative solution. We note that we don't actually care about the types of collections, just their capabilities:
TT should have foldLeft, get(i: Int) (to get head/tail)
ST should have length, get(i: Int) and a Builder
So we can encode these:
trait HasGet[T, CC[_]] {
def get(cc: CC[T], i: Int): T
}
object HasGet {
implicit def seqLikeHasGet[T, CC[X] <: SeqLike[X, _]] = new HasGet[T, CC] {
def get(cc: CC[T], i: Int): T = cc(i)
}
implicit def arrayHasGet[T] = new HasGet[T, Array] {
def get(cc: Array[T], i: Int): T = cc(i)
}
}
trait HasLength[CC] {
def length(cc: CC): Int
}
object HasLength {
implicit def seqLikeHasLength[CC <: SeqLike[_, _]] = new HasLength[CC] {
def length(cc: CC) = cc.length
}
implicit def arrayHasLength[T] = new HasLength[Array[T]] {
def length(cc: Array[T]) = cc.length
}
}
trait HasFold[T, CC[_]] {
def foldLeft[A](cc: CC[T], zero: A)(op: (A, T) => A): A
}
object HasFold {
implicit def seqLikeHasFold[T, CC[X] <: SeqLike[X, _]] = new HasFold[T, CC] {
def foldLeft[A](cc: CC[T], zero: A)(op: (A, T) => A): A = cc.foldLeft(zero)(op)
}
implicit def arrayHasFold[T] = new HasFold[T, Array] {
def foldLeft[A](cc: Array[T], zero: A)(op: (A, T) => A): A = {
var i = 0
var result = zero
while (i < cc.length) {
result = op(result, cc(i))
i += 1
}
result
}
}
}
(strictly speaking, HasFold is not required since its implementation is in terms of length and get, but i added it here so the algorithm will translate more cleanly)
now the algorithm is:
class Cartesian[T, ST[_], TT[Y]](val ll: TT[ST[T]])(implicit cbf: CanBuildFrom[Nothing, T, ST[T]], stHasLength: HasLength[ST[T]], stHasGet: HasGet[T, ST], ttHasFold: HasFold[ST[T], TT], ttHasGet: HasGet[ST[T], TT], ttHasLength: HasLength[TT[ST[T]]]) extends Iterator[ST[T]] {
def combicount (): Int = ttHasFold.foldLeft(ll, 1)((a,l) => a * stHasLength.length(l))
val last = combicount - 1
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): ST[T] = {
val res = combination (ll, 0, iter, cbf())
iter += 1
res
}
def combination (xx: TT[ST[T]], j: Int, i: Int, builder: Builder[T, ST[T]]): ST[T] =
if (ttHasLength.length(xx) == j) builder.result
else {
val head = ttHasGet.get(xx, j)
val headLength = stHasLength.length(head)
combination (xx, j + 1, i / headLength, builder += stHasGet.get(head, (i % headLength) ))
}
}
And use:
scala> new Cartesian[String, Vector, List](List(Vector("a"), Vector("xy"), Vector("AB")))
res6: Cartesian[String,Vector,List] = empty iterator
scala> new Cartesian[String, Array, Array](Array(Array("a"), Array("xy"), Array("AB")))
res7: Cartesian[String,Array,Array] = empty iterator
Scalaz probably has all of this predefined for you, unfortunately, I don't know it well.
(again I need to pass the types because inference doesn't infer the right kind)
The benefit is that the algorithm is now completely generic and that there is no need for implicit conversions from Array to WrappedArray in order for it to work
Excercise: define for tuples ;-)
I would like to add to all collections where it makes sense, an argMax method.
How to do it? Use implicits?
On Scala 2.8, this works:
val list = List(1, 2, 3)
def f(x: Int) = -x
val argMax = list max (Ordering by f)
As pointed by mkneissl, this does not return the set of maximum points. Here's an alternate implementation that does, and tries to reduce the number of calls to f. If calls to f don't matter that much, see mkneissl's answer. Also, note that his answer is curried, which provides superior type inference.
def argMax[A, B: Ordering](input: Iterable[A], f: A => B) = {
val fList = input map f
val maxFList = fList.max
input.view zip fList filter (_._2 == maxFList) map (_._1) toSet
}
scala> argMax(-2 to 2, (x: Int) => x * x)
res15: scala.collection.immutable.Set[Int] = Set(-2, 2)
The argmax function (as I understand it from Wikipedia)
def argMax[A,B](c: Traversable[A])(f: A=>B)(implicit o: Ordering[B]): Traversable[A] = {
val max = (c map f).max(o)
c filter { f(_) == max }
}
If you really want, you can pimp it onto the collections
implicit def enhanceWithArgMax[A](c: Traversable[A]) = new {
def argMax[B](f: A=>B)(implicit o: Ordering[B]): Traversable[A] = ArgMax.argMax(c)(f)(o)
}
and use it like this
val l = -2 to 2
assert (argMax(l)(x => x*x) == List(-2,2))
assert (l.argMax(x => x*x) == List(-2,2))
(Scala 2.8)
Yes, the usual way would be to use the 'pimp my library' pattern to decorate your collection. For example (N.B. just as illustration, not meant to be a correct or working example):
trait PimpedList[A] {
val l: List[A]
//example argMax, not meant to be correct
def argMax[T <% Ordered[T]](f:T => T) = {error("your definition here")}
}
implicit def toPimpedList[A](xs: List[A]) = new PimpedList[A] {
val l = xs
}
scala> def f(i:Int):Int = 10
f: (i: Int) Int
scala> val l = List(1,2,3)
l: List[Int] = List(1, 2, 3)
scala> l.argMax(f)
java.lang.RuntimeException: your definition here
at scala.Predef$.error(Predef.scala:60)
at PimpedList$class.argMax(:12)
//etc etc...
Nice and easy ? :
val l = List(1,0,10,2)
l.zipWithIndex.maxBy(x => x._1)._2
You can add functions to an existing API in Scala by using the Pimp my Library pattern. You do this by defining an implicit conversion function. For example, I have a class Vector3 to represent 3D vectors:
class Vector3 (val x: Float, val y: Float, val z: Float)
Suppose I want to be able to scale a vector by writing something like: 2.5f * v. I can't directly add a * method to class Float ofcourse, but I can supply an implicit conversion function like this:
implicit def scaleVector3WithFloat(f: Float) = new {
def *(v: Vector3) = new Vector3(f * v.x, f * v.y, f * v.z)
}
Note that this returns an object of a structural type (the new { ... } construct) that contains the * method.
I haven't tested it, but I guess you could do something like this:
implicit def argMaxImplicit[A](t: Traversable[A]) = new {
def argMax() = ...
}
Here's a way of doing so with the implicit builder pattern. It has the advantage over the previous solutions that it works with any Traversable, and returns a similar Traversable. Sadly, it's pretty imperative. If anyone wants to, it could probably be turned into a fairly ugly fold instead.
object RichTraversable {
implicit def traversable2RichTraversable[A](t: Traversable[A]) = new RichTraversable[A](t)
}
class RichTraversable[A](t: Traversable[A]) {
def argMax[That, C](g: A => C)(implicit bf : scala.collection.generic.CanBuildFrom[Traversable[A], A, That], ord:Ordering[C]): That = {
var minimum:C = null.asInstanceOf[C]
val repr = t.repr
val builder = bf(repr)
for(a<-t){
val test: C = g(a)
if(test == minimum || minimum == null){
builder += a
minimum = test
}else if (ord.gt(test, minimum)){
builder.clear
builder += a
minimum = test
}
}
builder.result
}
}
Set(-2, -1, 0, 1, 2).argmax(x=>x*x) == Set(-2, 2)
List(-2, -1, 0, 1, 2).argmax(x=>x*x) == List(-2, 2)
Here's a variant loosely based on #Daniel's accepted answer that also works for Sets.
def argMax[A, B: Ordering](input: GenIterable[A], f: A => B) : GenSet[A] = argMaxZip(input, f) map (_._1) toSet
def argMaxZip[A, B: Ordering](input: GenIterable[A], f: A => B): GenIterable[(A, B)] = {
if (input.isEmpty) Nil
else {
val fPairs = input map (x => (x, f(x)))
val maxF = fPairs.map(_._2).max
fPairs filter (_._2 == maxF)
}
}
One could also do a variant that produces (B, Iterable[A]), of course.
Based on other answers, you can pretty easily combine the strengths of each (minimal calls to f(), etc.). Here we have an implicit conversion for all Iterables (so they can just call .argmax() transparently), and a stand-alone method if for some reason that is preferred. ScalaTest tests to boot.
class Argmax[A](col: Iterable[A]) {
def argmax[B](f: A => B)(implicit ord: Ordering[B]): Iterable[A] = {
val mapped = col map f
val max = mapped max ord
(mapped zip col) filter (_._1 == max) map (_._2)
}
}
object MathOps {
implicit def addArgmax[A](col: Iterable[A]) = new Argmax(col)
def argmax[A, B](col: Iterable[A])(f: A => B)(implicit ord: Ordering[B]) = {
new Argmax(col) argmax f
}
}
class MathUtilsTests extends FunSuite {
import MathOps._
test("Can argmax with unique") {
assert((-10 to 0).argmax(_ * -1).toSet === Set(-10))
// or alternate calling syntax
assert(argmax(-10 to 0)(_ * -1).toSet === Set(-10))
}
test("Can argmax with multiple") {
assert((-10 to 10).argmax(math.pow(_, 2)).toSet === Set(-10, 10))
}
}