Newton algorithm - couln't calculate Hessian - matlab

I'm trying to write an implementation of Newton algorithm in Matlab.
When I call up my function using formula:
result = NewtonMethod(x(1).^2 - 2.1*x(1).^4 + (x(1).^6)/3 + x(1)*x(2) - 4*x(2).^2 + 4*x(2).^4, [0 0], 0.1, 10)
I've got an error message:
??? Undefined function or method 'hessian' for input arguments of type 'double'.
Error in ==> NewtonMethod at 13
H = hessian(f, x0);
I've got no idea what is wrong. Maybe someone more familiar with Matlab can help me.
Below it's my code:
function xnext = NewtonMethod(f, x0, eps, maxSteps)
% x0 - starting point (2 – dimensional vector)
% H - matrix of second derivatives (Hessian)
% eps - required tolerance of calculations
% maxSteps - length of step
x = x0;
for n=1:maxSteps
% determine the hessian H at the starting point x0,
H = hessian(f, x0);
% determine the gradient of the goal function gradf at the point x,
gradF = gradient(f, x);
% determine next point
xnext = x - inv(H) * x * gradF;
if abs(xnext - x) < eps
return %found
else
x = xnext; %update
end
end
It's my first contact with Matlab.
Update:
Now I've got an error:
??? Error using ==> mupadmex
Error in MuPAD command: Index exceeds matrix dimensions.
Error in ==> sym.sym>sym.subsref at 1381
B = mupadmex('symobj::subsref',A.s,inds{:});
I typed:
syms x
result = NewtonMethod(x(1).^2 - 2.1*x(1).^4 + (x(1).^6)/3 + x(1)*x(2) - 4*x(2).^2 + 4*x(2).^4, [0 0], 0.1, 10)

x(1).^2 - 2.1*x(1).^4 + (x(1).^6)/3 + x(1)*x(2) - 4*x(2).^2 + 4*x(2).^4
Is reduced to a double before the NewtonMethod function is called, so when your code reaches hessian(f, x0), you're passing it two double arguments, which is not a supported syntax.
Review the notes on properly specifying a symbolic function, and pass that into NewtonMethod.
It's been a long time since I've done numerical optimization, but take a look at the following:
function xn = NewtonMethod(f, x0, eps, maxSteps)
% x0 - starting point (2 – dimensional vector)
% H - matrix of second derivatives (Hessian)
% eps - required tolerance of calculations
% maxSteps - length of step
syms x y
H = hessian(f);
gradF = gradient(f);
xi = x0;
for i=1:maxSteps
% evaluate f at xi
zi = subs(f, [x,y], xi);
% determine the hessian H at the starting point x0,
hi = subs(H, [x,y], xi);
% determine the gradient of the goal function gradf at the point x,
gi = subs(gradF, [x,y], xi);
% determine next point
ss = 0.5; % step size
xn = xi - ss.* (inv(hi) * gi);
% evaluate f at xn
zn = subs(f, [x,y], xn);
% some debugging spam
zd = zn - zi; % the change in the value of the
si = sprintf('[%6.3f, %6.3f]', xi); % function from xi -> xn
sn = sprintf('[%6.3f, %6.3f]', xn);
printf('Step %3d: %s=%9.4f -> %s=%9.4f : zd=%9.4f\n', i, si, zi, sn, zn, zd);
% stopping condition
if abs(xi - xn) < eps
return %found
else
xi = xn; %update
end
end
And called with
result = NewtonMethod(f, [0; 1], 0.001, 100)

Related

Trouble fitting system of differential equations to data using lsqcurvefit

In matlab I am trying to fit the duffing equation as a system of differential equations to some generated data using lsqcurvefit. However when i run the code below I get the error:
Error using lsqcurvefit (line 262)
Function value and YDATA sizes are not equal.
Error in de_test (line 10)
[theta,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]= lsqcurvefit(#solve_duffing, theta0,t, data, zdata);
Does anyone have any idea how to fix this?
t = [0 1000];
z0 = [100; 1];
theta0=[1;1;1;1;1;1];
xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3];
zdata = [95.09 23.11 60.63 48.59 89.12 76.97 45.68 1.84 82.17 44.47];
data = [xdata,ydata];
[theta,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]= lsqcurvefit(#solve_duffing, theta0,t, data, zdata);
function [zs, ts] = solve_duffing(theta, t)
% Solve the system using the generic ode45 solver.
% x is the output grid of output time steps
% y is the value of z and z' at each point on the output grid.
% (These labels are assigned by Matlab)
z0 = [100; 1];
[x, y] = ode45(#duffing, t, z0);
ts = x;
% Derive z'' from the results
z = y(:,1);
zt = y(:,2);
ztt = -(theta(1)*zt + theta(2)*(zt.^2) + theta(3)*(zt.^3) ...
+ theta(4) *z + theta(5)*(z.^2) + theta(6)*(z.^3));
zs = [z zt ztt];
% Definition of the Duffing Equation as an system of implicit first
% order linear D.Es.
%
% Inputs
% t - The current time step. As the D.E. is implicit this is ignored.
% However it is required for the numeric solver.
% z - A vector of the values (z, z') for the current time step
% Outputs
% dz - A vector of the derivatives of z (ie. z', z'') for the current
% time step
function dz = duffing(~,z)
dz1 = z(2);
dz2 = -(theta(1)*z(2) + theta(2)*z(2)^2 + theta(3)*z(2)^3 ...
+ theta(4)*z(1) + theta(5)*z(1)^2 + theta(6)*z(1)^3);
dz = [dz1; dz2];
end
end

MATLAB fminunc stopped becaise it cannot decrease the objective formula?

I am trying to using fminunc to obtain the optimal theta in logistic regression, however I keep getting that:
fminunc stopped because it cannot decrease the objective function
along the current search direction.
Searching online, I found that this is usually the result of a gradient error which I am implementing in logistic_costFunction.m. I re-checked my work but I cannot spot the root cause.
I am not sure how to solve this issue, any help would be appreciated.
Here is my code:
clear all; close all; clc;
%% Plotting data
x1 = linspace(0,3,50);
mqtrue = 5;
cqtrue = 30;
dat1 = mqtrue*x1+5*randn(1,50);
x2 = linspace(7,10,50);
dat2 = mqtrue*x2 + (cqtrue + 5*randn(1,50));
x = [x1 x2]'; % X
subplot(2,2,1);
dat = [dat1 dat2]'; % Y
scatter(x1, dat1); hold on;
scatter(x2, dat2, '*'); hold on;
classdata = (dat>40);
%% Compute Cost and Gradient
% Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(x);
% Add intercept term to x and X_test
x = [ones(m, 1) x];
% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);
% Compute and display initial cost and gradient
[cost, grad] = logistic_costFunction(initial_theta, x, dat);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad);
%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(#(t)(logistic_costFunction(t, x, dat)), initial_theta, options);
logistic_costFunction.m
function [J, grad] = logistic_costFunction(theta, X, y)
% Initialize some useful values
m = length(y); % number of training examples
grad = zeros(size(theta));
H = sigmoid(X*theta);
T = y.*log(H) + (1 - y).*log(1 - H);
J = -1/m*sum(T);
% ====================Compute grad==================
for i = 1 : m
grad = grad + (H(i) - y(i)) * X(i,:)';
end
grad = 1/m*grad;
end
sigmoid.m
function g = sigmoid(z)
% Computes thes sigmoid of z
g = zeros(size(z));
g = 1 ./ (1 + (1 ./ exp(z)));
end

Optim-nonlinear equation in matlab code

I updated the question to clarify it more. Here is a graph:
For the curve in the attached photo, I hope to draw the curve. I have its equation and it is after simplification will be like this one
% Eq-2
(b*Y* cos(v) + c - k*X*sin(v))^2 + ...
sqrt(k*X*(cos(v) + 1.0) + b*Y*sin(v))^2) - d = 0.0
Where:
v = atan((2.0*Y)/X) + c
and b, c, d and k are constants.
from the attached graph,
The curve is identified in two points:
p1 # (x=0)
p2 # (y=0)
I a new on coding so accept my apologize if my question is not clear.
Thanks
So, after your edit, it is a bit more clear what you want.
I insist that your equation needs work -- the original equation (before your edit) simplified to what I have below. The curve for that looks like your plot, except the X and Y intercepts are at different locations, and funky stuff happens near X = 0 because you have numerical problems with the tangent (you might want to reformulate the problem).
But, after checking your equation, the following code should be helpful:
function solve_for_F()
% graininess of alpha
N = 100;
% Find solutions for all alphae
X = zeros(1,N);
options = optimset('Display', 'off');
alpha = linspace(0, pi/2, N);
x0 = linspace(6, 0, N);
for ii = 1:numel(alpha)
X(ii) = fzero(#(x)F(x, alpha(ii)), x0(ii), options);
end
% Convert and make an X-Y plot
Y = X .* tan(alpha);
plot(X, Y,...
'linewidth', 2,...
'color', [1 0.65 0]);
end
function fval = F(X, alpha)
Y = X*tan(alpha);
% Please, SIMPLIFY in the future
A = 1247745517111813/562949953421312;
B = 4243112111277797/4503599627370496;
V = atan2(2*Y,X) + A;
eq2 = sqrt( (5/33*( Y*sin(V) + X/2*(cos(V) + 1) ))^2 + ...
(5/33*( Y*cos(V) - X/2* sin(V) ))^2 ) - B;
fval = eq2;
end
Results:
So, I was having fun with this (thanks for that)!
Different question, different answer.
The solution below first searches for the constants causing the X and Y intercepts you were looking for (p1 and p2). For those constants that best fit the problem, it makes a plot, taking into account numerical issues.
In fact, you don't need eq. 1, because that's true always for any curve -- it's just there to confuse you, and problematic to use.
So, here it is:
function C = solve_for_F()
% Points of interest
px = 6;
py = 4.2;
% Wrapper function; search for those constants
% causing the correct X,Y intercepts (at px, py)
G = #(C) abs(F( 0, px, C)) + ... % X intercept at px
abs(F(py, 0, C)); % Y intercept at py
% Initial estimate, based on your original equation
C0 = [5/33
1247745517111813/562949953421312
4243112111277797/4503599627370496
5/66];
% Minimize the error in G by optimizing those constants
C = fminsearch(G, C0);
% Plot the solutions
plot_XY(px, py, C);
end
function plot_XY(xmax,ymax, C)
% graininess of X
N = 100;
% Find solutions for all alphae
Y = zeros(1,N);
X = linspace(0, xmax, N);
y0 = linspace(ymax, 0, N);
options = optimset('Display', 'off',...,...
'TolX' , 1e-10);
% Solve the nonlinear equation for each X
for ii = 1:numel(X)
% Wrapper function for fzero()
fcn1 = #(y)F(y, X(ii), C);
% fzero() is probably the fastest and most intuitive
% solver for this problem
[Y(ii),~,flag] = fzero(fcn1, y0(ii), options);
% However, it uses an algorithm that easily diverges
% when the function slope is large. For those cases,
% solve with fminsearch()
if flag ~= 1
% In this case, the minimum of the absolute value
% is searched for (which should be zero)
fcn2 = #(y) abs(fcn1(y));
Y(ii) = fminsearch(fcn2, y0(ii), options);
end
end
% Now plot the X,Y solutions
plot(X, Y,...
'linewidth', 2,...
'color', [1 0.65 0]);
xlabel('X'), ylabel('Y')
axis([0 xmax+.1 0 ymax+.1])
end
function fval = F(Y, X, C)
% Unpack constants
b = C(1); d = C(3);
c = C(2); k = C(4);
% pre-work
V = atan2(2*Y, X) + c;
% Eq. 2
fval = sqrt( (b*Y*sin(V) + k*X*(cos(V) + 1))^2 + ...
(b*Y*cos(V) - k*X* sin(V) )^2 ) - d;
end

MATLAB - passing a sinusoidal forcing function to ode45

I'm new to Matlab and am really struggling even to get to grips with the basics.
I've got a function, myspring, that solves position and velocity of a mass/spring system with damping and a driving force. I can specify values for the spring stiffness (k), damping coefficient (c), and mass (m), in the command window prior to running ode45. What I am unable to do is to define a forcing function (even something simple like g = sin(t)) and use that as the forcing function, rather than having it written into the myspring function.
Can anyone help? Here's my function:
function pdot = myspring(t,p,c,k,m)
w = sqrt(k/m);
g = sin(t); % This is the forcing function
pdot = zeros(size(p));
pdot(1) = p(2);
pdot(2) = g - c*p(2) - (w^2)*p(1);
end
and how I'm using it in the command window:
>> k = 2; c = 2; m = 4;
>> tspan = linspace(0,10,100);
>> x0 = [1 0];
>> [t,x] = ode45(#(t,p)myspring(t,p,c,k,m),tspan,x0);
That works, but what I want should look something like this (I imagine):
function pdot = myspring(t,p,c,k,m,g)
w = sqrt(k/m);
pdot = zeros(size(p));
pdot(1) = p(2);
pdot(2) = g - c*p(2) - (w^2)*p(1);
end
Then
g = sin(t);
[t,x] = ode45(#(t,p)myspring(t,p,c,k,m,g),tspan,x0);
But what I get is this
In an assignment A(:) = B, the number of elements in A and B must be the same.
Error in myspring (line 7)
pdot(2) = g - c*p(2) - (w^2)*p(1);
Error in #(t,p)myspring(t,p,c,k,m,g)
Error in odearguments (line 87)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Horchler, thank you for the reply. I can do as you suggested and it works. I am now faced with another problem that I hope you could advise me on.
I have a script that calculates the force on a structure due to wave interaction using Morison's equation. I gave it an arbitrary time span to begin with. I would like to use the force F that script calculates as the input driving force to myspring. Here is my Morison script:
H = 3.69; % Wave height (m)
A = H/2; % Wave amplitude (m)
Tw = 9.87; % Wave period (s)
omega = (2*pi)/Tw; % Angular frequency (rad/s)
lambda = 128.02; % Wavelength (m)
k = (2*pi)/lambda; % Wavenumber (1/m)
dw = 25; % Water depth (m)
Cm = 2; % Mass coefficient (-)
Cd = 0.7; % Drag coefficient (-)
rho = 1025; % Density of water (kg/m^3)
D = 3; % Diameter of structure (m)
x = 0; % Fix the position at x = 0 for simplicity
t = linspace(0,6*pi,n); % Define the vector t with n time steps
eta = A*cos(k*x - omega*t); % Create the surface elevation vector with size equal to t
F_M = zeros(1,n); % Initiate an inertia force vector with same dimension as t
F_D = zeros(1,n); % Initiate a drag force vector with same dimension as t
F = zeros(1,n); % Initiate a total force vector with same dimension as t
fun_inertia = #(z)cosh(k*(z+dw)); % Define the inertia function to be integrated
fun_drag = #(z)(cosh(k*(z+dw)).*abs(cosh(k*(z+dw)))); % Define the drag function to be integrated
for i = 1:n
F_D(i) = abs(((H*pi)/Tw) * (1/sinh(k*dw)) * cos(k*x - omega*t(i))) * ((H*pi)/Tw) * (1/sinh(k*dw)) * cos(k*x - omega*t(i)) * integral(fun_drag,-dw,eta(i));
F_M(i) = (Cm*rho*pi*(D^2)/4) * ((2*H*pi^2)/(Tw^2)) * (1/(sin(k*dw))) * sin(k*x - omega*t(i)) * integral(fun_inertia,-dw,eta(i));
F(i) = F_D(i) + F_M(i);
end
Any further advice would be much appreciated.
You can't pre-calculate your forcing function. It depends on time, which ode45 determines. You need to define g as a function and pass a handle to it into your integration function:
...
g = #(t)sin(t);
[t,x] = ode45(#(t,p)myspring(t,p,c,k,m,g),tspan,x0);
And then call it I n your integration function, passing in the current time:
...
pdot(2) = g(t) - c*p(2) - (w^2)*p(1);
...

Simulink simulation behaving massively different than the same simulation using rk4

I have difficulties simulating an object discribed by the following state space equations in simulink:
The right hand side of the state space equation is described by the funcion below.
function dxdt = RHS( t, x, F)
% parameters
b = 1.22; % cart friction coeffitient
c = 0.0027; %pendulum friction coeffitient
g = 9.81; % gravity
M = 0.548+0.022*2; % cart weight
m = 0.031*2; %pendulum masses
I = 0.046;%0.02*0.025/12+0.02*0.12^2+0.011*0.42^2; % moment of inertia
l = 0.1313;
% x(1) = theta
% x(2) = theta_dot
% x(3) = x
% x(4) = x_dot
dxdt = [x(2);
(-(M+m)*c*x(2)-(M+m)*g*l*sin(x(1))-m^2*l^2*x(2)^2*sin(x(1))*cos(x(1))+m*l*b*x(4)*cos(x(1))-m*l*cos(x(1))*F)/(I*(m+M)+m*M*l^2+m^2*l^2*sin(x(1))^2);
x(4);
(F - b*x(4) + l*m*x(2)^2*sin(x(1)) + (l*m*cos(x(1))*(c*x(2)*(M + m) + g*l*sin(x(1))*(M + m) + F*l*m*cos(x(1)) + l^2*m^2*x(2)^2*cos(x(1))*sin(x(1)) - b*l*m*x(4)*cos(x(1))))/(I*(M + m) + l^2*m^2*sin(x(1))^2 + M*l^2*m))/(M + m)];
end
The coresponding rk4 function with a simple visualisation is shown below.
function [wi, ti] = rk4 ( RHS, t0, x0, tf, N )
%RK4 approximate the solution of the initial value problem
%
% x'(t) = RHS( t, x ), x(t0) = x0
%
% using the classical fourth-order Runge-Kutta method - this
% routine will work for a system of first-order equations as
% well as for a single equation
%
% calling sequences:
% [wi, ti] = rk4 ( RHS, t0, x0, tf, N )
% rk4 ( RHS, t0, x0, tf, N )
%
% inputs:
% RHS string containing name of m-file defining the
% right-hand side of the differential equation; the
% m-file must take two inputs - first, the value of
% the independent variable; second, the value of the
% dependent variable
% t0 initial value of the independent variable
% x0 initial value of the dependent variable(s)
% if solving a system of equations, this should be a
% row vector containing all initial values
% tf final value of the independent variable
% N number of uniformly sized time steps to be taken to
% advance the solution from t = t0 to t = tf
%
% output:
% wi vector / matrix containing values of the approximate
% solution to the differential equation
% ti vector containing the values of the independent
% variable at which an approximate solution has been
% obtained
%
% x(1) = theta
% x(2) = theta_dot
% x(3) = x
% x(4) = x_dot
t0 = 0; tf = 5; x0 = [pi/2; 0; 0; 0]; N = 400;
neqn = length ( x0 );
ti = linspace ( t0, tf, N+1 );
wi = [ zeros( neqn, N+1 ) ];
wi(1:neqn, 1) = x0';
h = ( tf - t0 ) / N;
% force
u = 0.0;
%init visualisation
h_cart = plot(NaN, NaN, 'Marker', 'square', 'color', 'red', 'LineWidth', 6);
hold on
h_pend = plot(NaN, NaN, 'bo', 'LineWidth', 3);
axis([-5 5 -5 5]);
axis manual;
xlim([-5 5]);
ylim([-5 5]);
for i = 1:N
k1 = h * feval ( 'RHS', t0, x0, u );
k2 = h * feval ( 'RHS', t0 + (h/2), x0 + (k1/2), u);
k3 = h * feval ( 'RHS', t0 + h/2, x0 + k2/2, u);
k4 = h * feval ( 'RHS', t0 + h, x0 + k3, u);
x0 = x0 + ( k1 + 2*k2 + 2*k3 + k4 ) / 6;
t0 = t0 + h;
% model output
wi(1:neqn,i+1) = x0';
% model visualisation
%plotting cart
l = 2;
set(h_cart, 'XData', x0(3), 'YData', 0, 'LineWidth', 5);
%plotting pendulum
%hold on;
set(h_pend, 'XData', sin(x0(1))*l+x0(3), 'YData', -cos(x0(1))*l, 'LineWidth', 2);
%hold off;
% regulator
pause(0.02);
end;
figure;
plot(ti, wi);
legend('theta', 'theta`', 'x', 'x`');
This gives realistic looking results for a pendulum on a cart.
Now to the problem.
I wanted to recreate the exact same equations in simulink. I thought it is going to be as easy as creating the following simulink model.
where I fill the fcn blocks with the second and fourth equation from the RHS file. Like this.
(-(M+m)*c*u(2)-(M+m)*g*l*sin(u(1))-m^2*l^2*u(2)^2*sin(u(1))*cos(u(1))+m*l*b*u(3)*cos(u(1))-m*l*cos(u(1))*u(4))/(I*(m+M)+m*M*l^2+m^2*l^2*sin(u(1))^2)
(u(5) - b*u(4) + l*m*u(2)^2*sin(u(1)) + (l*m*cos(u(1))*(c*u(2)*(M + m) + g*l*sin(u(1))*(M + m) + u(5)*l*m*cos(u(1)) + l^2*m^2*u(2)^2*cos(u(1))*sin(u(1)) - b*l*m*u(4)*cos(u(1))))/(I*(M + m) + l^2*m^2*sin(u(1))^2 + M*l^2*m))/(M + m)
The problem is this doesn't give the correct results from above, but the one below
Does anybody know what I do incorrectly?
Edit:After #am304 comment I decided to add the following information. I changed the setting for the simulink solver to use the fixed-step rk4 solver, so as to get the same results. The second integrator3 from the model above has been initialized to pi/2.
Edit2: If somebody wants to check out the simulink model for themselves click on the link to download the file.
Edit3: As you can read in the answer below the problem was trivial. You can download the correct model here
I looked through your Simulink model and it seems you may have mixed up the two functions you were using. You used the theta_dd function where you meant to put x_dd and vice versa.
In your model, you also force x_d to be set to a constant value 0. I assume you actually meant to set the initial condition to 0, which you can see is done via the Integrator block. x_d (as an input to f) should be your state vector which is also an output of your integrators. This is just a consequence of what you define x_d to be, the integral of x_dd. This is how RK4 works as well; you use an initial state vector first and then use the predicted state vector to drive the next RK4 step.
The resulting output from the scope (i've outputted your whole state vector here) is as follows and looks like what you expect:
I do not think I should link externally to the simulink file so if you would like a copy of the file you can open a chat and ask for it. Otherwise the picture above should be sufficient enough to help you reproduce the same results.