lisp error: should be lambda expression - lisp

I'm learning lisp by myself and I canĀ“t figure out why am I getting this error.
If somebody could help me that would be great :)
This is the condition where I'm getting the error:
(cond ((equal c1 caracter) (push caracter pilatemp))
((or (equal c2 caracter) (equal c3 caracter) (equal c4 caracter) (equal c5 caracter) (equal c6 caracter))
((loop
(setf t1 (jerarquia(caracter)))
(setf t2 (jerarquia(first pilatemp)))
if((or (= t1 t2) (> t1 t2)) (return))
(push (pop pilatemp) piladef))
(push caracter pilatemp)
))
((equal c7 caracter) ((loop
if((equal (first pila) c1) (return))
(push (pop pilatemp) piladef))
(pop pilatemp)))
(T (push caracter piladef))
)
And here is the "jerarquia" function:
(defun jerarquia(x)
(setf c1 ")")
(setf c2 "+")
(setf c3 "-")
(setf c4 "^")
(setf c5 "*")
(setf c6 "/")
(setf c7 "(")
(cond ((equal c1 x) 5)
((equal c4 x) 4)
((equal c5 x) 3)
((equal c2 x) 2)
((equal c7 x) 1)
(T 0)))
Here's the error I'm getting:
*** - SYSTEM::%EXPAND-FORM:
(LOOP (SETF T1 (JERARQUIA (CARACTER)))
(SETF T2 (JERARQUIA (FIRST PILATEMP))) IF
((OR (= T1 T2) (> T1 T2)) (RETURN)) (PUSH (POP PILATEMP) PILADEF))
should be lambda expression

It's clear that you are quite confused about how SExpressions are put together to create valid Common Lisp programs. That's common for a beginner. Let me take a stab at giving you a very brief introduction.
The simplest thing are atoms. Things like Alpha, +, 12, -23.4; those four are respectively two symbols, two numbers. The plus sign is a symbol, just like alpha.
The next simplest thing are function calls, i.e. invoking a function. For example: (+ 1 2). The function in that example is addition, and it's associated with the symbol +.
Function calls are common in all programming languages. And typically they evaluate them left to right bottom up. So (F (G 1 2) (H 3 5)) will call G, then H, then F. If they want to do something else they introduce syntax, like if statements, loops, etc. etc.
Which brings us t the next thing, a clever thing. In Lisp all the syntax appears at first blush just like a function call. So you get things like: (if (< a b) (f a) (f b)). Which is not evaluated bottom up, but top down so that it can decided based on the first form which of the two calls on F it should make.
These top-down forms come in two flavors, special forms and macros, but for a beginner that's not important. These forms are used instead of the syntax you find in other languages. The evaluator/compilers glance at the first term in the list to decide if it's a simple function call or a bit of syntax.
Which lets us explain the error you observed in your posting. The evaluator (or compiler) saw ((loop ...) ...), and the first term in that is (loop ...). That bewildered the evaluator. It expects to see a symbol. Of course the error message is entirely opaque, but that's because things are a bit more subtle than I'm making them out to be. For a beginner that doesn't matter.
The form (cond ...) is another example of a form this isn't a simple function call, but is instead more like syntax. The when it glanced as the first element, i.e. cond, it knew to expect (cond (??? ...) (??? ...) ...etc...) where the ??? are forms it will used to decide if it should run that branch's ...
There are numerous other problems with your code. I'd recommend that you get a lisp REPL and experiment with things in much smaller pieces. The loops are broken. The "((OR (..." suffers the same problem of the first form not being a symbol. It appears that your calling strings that contain a single character "characters" rather than strings, that's tacky but tolerable.

Lisp differs from most other languages in that parentheses matter.
Specifically, (foo) is not the same as foo and ((foo)).
When you write (JERARQUIA (CARACTER)), lisp thinks that you want to call JERARQUIA on the return value of the function CARACTER, not the value of the variable CARACTER.
Similarly, when you write ((loop ...) ...), lisp must interpret (loop ...) as a function designator, which can be either a symbol or a lambda expression (or (setf ...)).
Therefore, all you need to do to avoid this error is remove the extra set of parens, replacing ((loop ...)) with (loop ...).

Related

Difference between an implementation of 'when' as a function vs. as a macro

What exactly is different between these implementations of 'when'?
(define-syntax when
(syntax-rules ()
((_ pred b1 ...)
(if pred (begin b1 ...)))))
vs.
(define (my-when pred b1 ...)
(if pred (begin b1 ...)))
For example, when 'my-when' is used in this for loop macro:
(define-syntax for
(syntax-rules ()
((_ (i from to) b1 ...)
(let loop((i from))
(my-when (< i to)
b1 ...
(loop (+ i 1)))))))
an error occurs:
(for (i 0 10) (display i))
; Aborting!: maximum recursion depth exceeded
I do not think 'when' can be implemented as a function, but I do not know why...
Scheme has strict semantics.
This means that all of a function's parameters are evaluated before the function is applied to them.
Macros take source code and produce source code - they don't evaluate any of their parameters.
(Or, well, I suppose they do, but their parameters are syntax - language elements - rather than what you normally think of as values, such as numbers or strings. Macro programming is meta-programming. It's important to be aware of which level you're programming at.)
In your example this means that when my-when is a function, (loop (+ i 1)) must be evaluated before my-when can be applied to it.
This leads to an infinite recursion.
When it's a macro, the my-when form is first replaced with the equivalent if-form
(if (< i to)
(begin
b1 ...
(loop (+ i 1))))
and then the whole thing is evaluated, which means that (loop (+ i 1)) only gets evaluated when the condition is true.
If you implement when as a procedure like you did, then all arguments are evaluated. In your for implementation, the evaluation would be processed like this:
evaluate (< i to)
evaluate expansion result of b1 ...
evaluate (loop (+ i 1)) <- here goes into infinite loop!
evaluate my-when
Item 1-3 can be reverse or undefined order depending on your implementation but the point is nr. 4. If my-when is implemented as a macro, then the macro is the first one to be evaluated.
If you really need to implement with a procedure, then you need to use sort of delaying trick such as thunk. For example:
(define (my-when pred body) (if (pred) (body)))
(my-when (lambda () (< i 10)) (lambda () (display i) (loop (+ i 1))))

'('(LIST) 'NIL 'NIL) should be a lambda expression in (hanoi('('(list)'()'())))

I'm trying to implement the Towers of Hanoi.I'm not printing out anything between my recursive calls yet, but I keep getting an error saying
'('(LIST) 'NIL 'NIL) should be a lambda expression
I've read that the reason this happens is because of a problem with the parenthesis, however I cannot seem to find what my problem is. I think it's happening in the pass-list function when I am trying to call the hanoi function. My code:
(defun pass-list(list)
(hanoi('('(list)'()'())))
)
(defun hanoi ('('(1) '(2) '(3)))
(hanoi '('(cdr 1) '(cons(car 1) 2) '(3)))
(hanoi '('(cons(car 3)1) '(2)'(cdr 3)))
)
This code has many syntax problems; there are erroneous quotes all over the place, and it looks like you're trying to use numbers as variables, which will not work. The source of the particular error message that you mentioned comes from
(hanoi('('(list)'()'())))
First, understand that the quotes in 'x and '(a b c) are shorthand for the forms (quote x) and (quote (a b c)), and that (quote anything) is the syntax for getting anything, without anything being evaluated. So '(1 2 3) gives you the list (1 2 3), and '1 gives you 1. quote is just a symbol though, and can be present in other lists, so '('(list)'()'()) is the same as (quote ((quote (list)) (quote ()) (quote ()))) which evaluates to the list ((quote (list)) (quote ()) (quote ())). Since () can also be written nil (or NIL), this last is the same as ('(list) 'NIL 'NIL). In Common Lisp, function calls look like
(function arg1 arg2 ...)
where each argi is a form, and function is either a symbol (e.g., list, hanoi, car) or a list, in which case it must be a lambda expression, e.g., (lambda (x) (+ x x)). So, in your line
(hanoi('('(list)'()'())))
we have a function call. function is hanoi, and arg1 is ('('(list)'()'())). But how will this arg1 be evaluated? Well, it's a list, which means it's a function application. What's the function part? It's
'('(list)'()'())
which is the same as
'('(list 'NIL 'NIL))
But as I just said, the only kind of list that can be function is a lambda expression. This clearly isn't a lambda expression, so you get the error that you're seeing.
I can't be sure, but it looks like you were aiming for something like the following. The line marked with ** is sort of problematic, because you're calling hanoi with some arguments, and when it returns (if it ever returns; it seems to me like you'd recurse forever in this case), you don't do anything with the result. It's ignored, and then you go onto the third line.
(defun pass-list(list)
(hanoi (list list) '() '()))
(defun hanoi (a b c)
(hanoi (rest a) (cons (first a) b) c) ; **
(hanoi (cons (first c) a) b (rest c)))
If hanoi is supposed to take a single list as an argument, and that list is supposed to contain three lists (I'm not sure why you'd do it that way instead of having hanoi take just three arguments, but that's a different question, I suppose), it's easy enough to modify; just take an argument abc and extract the first, second, and third lists from it, and pass a single list to hanoi on the recursive call:
(defun hanoi (abc)
(let ((a (first abc))
(b (second abc))
(c (third abc)))
(hanoi (list (rest a) (cons (first a) b) c))
(hanoi (list (cons (first c) a) b (rest c)))))
I'd actually probably use destructuring-bind here to simplify getting a, b, and c out of abc:
(defun hanoi (abc)
(destructuring-bind (a b c) abc
(hanoi (list (rest a) (cons (first a) b) c))
(hanoi (list (cons (first c) a) b (rest c)))))

how to do value assignment issue in lisp

I am learning common lisp and tried to implement a swap value function to swap two variables' value. Why the following does not work?
(defun swap-value (a b)
(setf tmp 0)
(progn
((setf tmp a)
(setf a b)
(setf b tmp))))
Error info:
in: LAMBDA NIL
; ((SETF TMP A) (SETF A B) (SETF B TMP))
;
; caught ERROR:
; illegal function call
; (SB-INT:NAMED-LAMBDA SWAP-VALUE
; (A B)
You can use the ROTATEF macro to swap the values of two places. More generally, ROTATEF rotates the contents of all the places to the left. The contents of the
leftmost place is put into the rightmost place. It can thus be used with more than two places.
dfan is right, this isn't going to swap the two values.
The reason you are getting that error though is that this:
(progn
((setf tmp a)
(setf a b)
(setf b tmp)))
should be this:
(progn
(setf tmp a)
(setf a b)
(setf b tmp))
The first progn has one s-expression in the body, and it's treated
as an application of the function (setf tmp a). In Common Lisp, I
think that only variables or lambda forms can be in the function
position of an application. I could be wrong about the details here,
but I know there are restrictions in CL that aren't in Scheme. That's
why it's an illegal call.
For instance, this is illegal in CL and results in the same error:
CL-USER> ((if (< 1 2) #'+ #'*) 2 3)
; in: LAMBDA NIL
; ((IF (< 1 2) #'+ #'*) 2 3)
;
; caught ERROR:
; illegal function call
;
; compilation unit finished
; caught 1 ERROR condition
You COULD write a swap as a macro (WARNING: I'm a Lisp noob, this
might be a terrible reason for a macro and a poorly written one!)
(defmacro swap (a b)
(let ((tmp (gensym)))
`(progn
(setf ,tmp ,a)
(setf ,a ,b)
(setf ,b ,tmp))))
Nope! Don't do this. Use rotatef as Terje Norderhaug points out.
A function (rather than macro) swapping two special variables can take the variable symbols as arguments. That is, you quote the symbols in the call. Below is an implementation of such a swap function:
(defvar *a* 1)
(defvar *b* 2)
(defun swap-values (sym1 sym2)
(let ((tmp (symbol-value sym1)))
(values
(set sym1 (symbol-value sym2))
(set sym2 tmp))))
? (swap-values '*a* '*b*)
2
1
? *a*
2
Note the use of defvar to define global/special variables and the per convention use of earmuffs (the stars) in their names. The symbol-value function provides the value of a symbol, while set assigns a value to the symbol resulting from evaluating its first argument. The values is there to make the function return both values from the two set statements.
You can not use setf to build a lexical variable tmp. You can use let, as follow:
(defun swap-value (a b)
(let ((tmp 0))
(setf tmp a)
(setf a b)
(setf b tmp))
(values a b))
which will do you hope.
Complimentary to other answers, the OP's targeted problem - the (multiple) value assignment issue - can be solved by parallel assignment using psetf:
(let ((a 21)
(b 42))
(psetf a b
b a)
(print (list a b)))
;; (42 21)

LISP functions that perform both symbolic and numeric operations on expressions using +, -, *, and /

I'm currently working on a LISP exercise for a small project and need severe help. This may be more or less of a beginner's question but I'm absolutely lost on writing a certain function that takes in two unevaluated functions and spits out the result dependent on if the variables were given an assignment or not.
An example would be
(setq p1 '(+ x (* x (- y (/ z 2)))))
Where
(evalexp p1 '( (x 2) (z 8) ))
returns (+ 2 (* 2 (- y 4)))
My goal is to write the evalexp function but I can't even think of where to start.
So far I have
(defun evalexp (e b) )
.. not very much. If anyone could please help or lead me in a good direction I'd be more than appreciative.
Here's a full solution. It's pretty straightforward, so I'll leave out a full explanation. Ask me in the comments if there's anything you can't figure out yourself.
(Using eval to do the actual evaluation might not be what you want in your exercise/project. Look up "meta-circular interpreter" for another way.)
(defun apply-env (exp env)
(reduce (lambda (exp bdg) (subst (cadr bdg) (car bdg) exp))
env :initial-value exp))
(defun try-eval (exp)
(if (atom exp)
exp
(let ((exp (mapcar #'try-eval exp)))
(if (every #'numberp (cdr exp))
(eval exp)
exp))))
(defun evalexp (exp env)
(try-eval (apply-env exp env)))
Here's a hint, this is how you might do it (in pseudocode):
function replace(vars, list):
for each element of list:
if it's an atom:
if there's an association in vars:
replace atom with value in vars
else:
leave atom alone
else:
recursively apply replace to the sublist
There will certainly be some details to work out as you convert this to Lisp code.

How do I map a macro across a list in Scheme?

I have a Scheme macro and a long list, and I'd like to map the macro across the list, just as if it were a function. How can I do that using R5RS?
The macro accepts several arguments:
(mac a b c d)
The list has
(define my-list ((a1 b1 c1 d1)
(a2 b2 c2 d2)
...
(an bn cn dn)))
And I'd like to have this:
(begin
(mac a1 b1 c1 d2)
(mac a2 b2 c2 d2)
...
(mac an bn cn dn))
(By the way, as you can see I'd like to splice the list of arguments too)
Expanding on z5h's answer of using eval, the methods below show how a map-macro macro can be written if interaction-environment in implemented in the version of R5RS in use:
(define test-list '((1 2 3 4)
(5 6 7 8)))
;Or if your version of scheme implments interaction-environment then:
(define-syntax trade
(syntax-rules ()
((_ a b c d) (display (list b a d c)))))
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
;Careful this is not really mapping. More like combined map and apply.
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(define-syntax map-macro
(syntax-rules ()
((_ mac ls) (let ((mac-list (map (lambda (lst) (cons 'trade lst)) ls)))
(eval
`(begin
,#mac-list)
(interaction-environment))))
))
(map-macro trade test-list)
;outputs: (2 1 4 3)(6 5 8 7)
So that last map-macro call evaluates the following:
What ends up getting evaluated from (map-macro trade test-list) is:
(begin
(trade 1 2 3 4)
(trade 5 6 7 8))
Which is not quite a map, but I believe it does answers your question.
Syntactic extensions are expanded into
core forms at the start of evaluation
(before compilation or interpretation)
by a syntax expander. -Dybvig, "The
Scheme Programming Language:
A macro operates on syntax. This happens before compilation or execution. It gives you another way of writing the same code.
A function operates on variables and values (which might be lists, atoms, numbers, etc) who's value is known when the function is invoked.
So mapping a macro doesn't make sense. You're asking to invoke something (macro expansion) that already happened long ago.
If you need something to write code for you and evaluate it at runtime, then might be one of those cases where you need eval.
Would something like
(map (lambda (l) (mac (car l) (caar l) (caaar l) (caaaar l))) mylist)
work?