VL_SLIC MATLAB Output for VL_FEAT - matlab

I am using the VL_SLIC function in MATLAB and I am following the tutorial for the function here: http://www.vlfeat.org/overview/slic.html
This is the code I have written so far:
im = imread('slic_image.jpg');
regionSize = 10 ;
regularizer = 10;
vl_setup;
segments = vl_slic(single(im), regionSize, regularizer);
imshow(segments);
I just get a black image and I am not able to see the segmented image with the superpixels. Is there a way that I can view the result as shown in the webpage?

The reason why is because segments is actually a map that tells you which regions of your image are superpixels. If a pixel in this map belongs to ID k, this means that this pixel belongs to superpixel k. Also, the map is of type uint32 and so when you try doing imshow(segments); it really doesn't show anything meaningful. For that image that is seen on the website, there are 1023 segments given your selected parameters. As such, the map spans from 0 to 1023. If want to see what the segments look like, you could do imshow(segments,[]);. What this will do is that the region with the ID of 1023 will get mapped to white, while the pixels that don't belong to any superpixel region (ID of 0), gets mapped to black. You would actually get something like this:
Not very meaningful! Now, to get what you see on the webpage, you're going to have to do a bit more work. From what I know, VLFeat doesn't have built-in functionality that shows you the results like what is seen on their webpage. As such, you will have to write code to do it yourself. You can do this by following these steps:
Create a map that is true that is the same size as the image
For each superpixel region k:
Create another map that marks true for any pixel belonging to the region k, and false otherwise.
Find the perimeter of this region.
Set these perimeter pixels to false in the map created in Step #1
Repeat Step #2 until we have finished going through all of the regions.
Use this map to mask out all of the pixels in the original image to get what you see in the website.
Let's go through that code now. Below is the setup that you have established:
vl_setup;
im = imread('slic_image.jpg');
regionSize = 10 ;
regularizer = 10 ;
segments = vl_slic(single(im), regionSize, regularizer);
Now let's go through that algorithm that I just mentioned:
perim = true(size(im,1), size(im,2));
for k = 1 : max(segments(:))
regionK = segments == k;
perimK = bwperim(regionK, 8);
perim(perimK) = false;
end
perim = uint8(cat(3,perim,perim,perim));
finalImage = im .* perim;
imshow(finalImage);
We thus get:
Bear in mind that this is not exactly the same as what you get on the website. I simply went to the website and saved that image, then proceeded with the code I just showed you. This is probably because the slic_image.jpg image is not the exact original that was given in their example. There seems to be superpixels in areas where there are some bad quantization artifacts. Also, I'm using a relatively old version of VLFeat - Version 0.9.16. There may have been improvements to the algorithm since then, so I may not be using the most up to date version. In any case, this is something for you that you can start with.
Hope this helps!

I found these lines in vl_demo_slic.m may be useful.
segments = vl_slic(im, regionSize, regularizer, 'verbose') ;
% overaly segmentation
[sx,sy]=vl_grad(double(segments), 'type', 'forward') ;
s = find(sx | sy) ;
imp = im ;
imp([s s+numel(im(:,:,1)) s+2*numel(im(:,:,1))]) = 0 ;
It generates edges from the gradient of the superpixel map (segments).

While I want to take nothing away from ~ rayryeng's ~ beautiful answer.
This could also help.
http://www.vlfeat.org/matlab/demo/vl_demo_slic.html
Available in: toolbox/demo

Related

Filling the gaps in a binary image

I have found a couple areas referring to filling of gaps in binary images in matlab, however I am still struggling. I have written the following code but I cannot get it to work. Here is my binary image:
.
However, what I'm trying to achieve is the following
.
Does anyone know how to do this? I have been trying using imfill but I know I think I need to define boundaries also with the bwlabel function but I dont know how. Any help would be greatly appreciated.
%%Blade_Image_Processing
clc;
clear;
%%Video file information
obj = VideoReader('T9_720p;60p_60mm_f4.MOV');
% Sampling rate - Frames per second
fps = get(obj, 'FrameRate');
dt = 1/fps;
% ----- find image info -----
file_info = get(obj);
image_width = file_info.Width;
image_height = file_info.Height;
% Desired image size
x_range = 1:image_height;
y_range = 1:image_width;
szx = length(x_range);
szy = length(y_range);
%%Get grayscale image
grayscaleimg1 = rgb2gray(read(obj,36));
grayscaleimg = imadjust(grayscaleimg1);
diff_im = medfilt2(grayscaleimg, [3 3]);
t1=60;
t2=170;
range=(diff_im > t1 & diff_im <= t2);
diff_im (range)=255;
diff_im (~range)=0;
% Remove all those pixels less than 300px
diff_im = bwareaopen(diff_im,2000);
%imshow(diff_im)
%imhist(grayscaleimg)
%Fill gaps in binary image
BW2 = imfill(diff_im,'holes');
There are two main problems: desired object has no readily usable distinguishing features, and it touches other object. Second problem could be perhaps cleared with morphological opening/closing (touching object is thin, desired object not, is this always the case?), but first problem remains. If your object touched edge but others didn't or vice versa, you could do something with imfill and subtractions. As it is now, MAYBE something like this would work:
With opening/closing remove connection, so your object is disjoint.
With imfill, remove what is left of this thin horizontal thing.
Then, you can bwlabel and remove everything that touches sides or bottom of the image - in shown case that would leave only your object.
Exact solution depends heavily on what additional constrains are there for your pictures. I believe it is not a one-shot, rather you have more of those pictures and want to correctly find objects on all? You have to check what holds for all pictures, such as if object always touches only something thin or if it always touches only upper edge etc.

counting the number of objects on image with MatLab

I need to count the number of chalks on image with MatLab. I tried to convert my image to grayscale image and than allocate borders. Also I tried to convert my image to binary image and do different morphological operations with it, but I didn't get desired result. May be I did something wrong. Please help me!
My image:
You can use the fact that chalk is colorful and the separators are gray. Use rgb2hsv to convert the image to HSV color space, and take the saturation component. Threshold that, and then try using morphology to separate the chalk pieces.
This is also not a full solution, but hopefully it can provide a starting point for you or someone else.
Like Dima I noticed the chalk is brightly colored while the dividers are almost gray. I thought you could try and isolate gray pixels (where a gray pixel says red=blue=green) and go from there. I tried applying filters and doing morphological operations but couldn't find something satisfactory. still, I hope this helps
mim = imread('http://i.stack.imgur.com/RWBDS.jpg');
%we average all 3 color channels (note this isn't exactly equivalent to
%rgb2gray)
grayscale = uint8(mean(mim,3));
%now we say if all channels (r,g,b) are within some threshold of one another
%(there's probabaly a better way to do this)
my_gray_thresh=25;
graymask = (abs(mim(:,:,1) - grayscale) < my_gray_thresh)...
& (abs(mim(:,:,2) - grayscale) < my_gray_thresh)...
& (abs(mim(:,:,3) - grayscale) < my_gray_thresh);
figure(1)
imshow(graymask);
Ok so I spent a little time working on this- but unfortunately I'm out of time today and I apologize for the incomplete answer, but maybe this will get you started- (if you need more help, I'll edit this post over the weekend to give you a more complete answer :))
Here's the code-
for i=1:3
I = RWBDS(:,:,i);
se = strel('rectangle', [265,50]);
Io = imopen(I, se);
Ie = imerode(I, se);
Iobr = imreconstruct(Ie, I);
Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);
Iobrcbrm = imregionalmax(Iobrcbr);
se2 = strel('rectangle', [150,50]);
Io2 = imerode(Iobrcbrm, se2);
Ie2 = imdilate(Io2, se2);
fgm{i} = Ie2;
end
fgm_final = fgm{1}+fgm{2}+fgm{3};
figure, imagesc(fgm_final);
It does still pick up the edges on the side of the image, but from here you're going to use connected bwconnectedcomponents, and you'll get the lengths of the major and minor axes, and by looking at the ratios of the objects it will get rid those.
Anyways good luck!
EDIT:
I played with the code a tiny bit more, and updated the code above with the new results. In cases when I was able to get rid of the side "noise" it also got rid of the side chalks. I figured I'd just leave both in.
What I did: In most cases a conversion to HSV color space is the way to go, but as shown by #rayryeng this is not the way to go here. Hue works really well when there is one type of color- if for example all chalks were red. (Logically you would think that going with the color channel would be better though, but this is no the case.) In this case, however, the only thing all chalks have in common is the relative shape. My solution basically used this concept by setting the structuring element se to something of the basic shape and ratio of the chalk and performing morphological operations- as you originally guessed was the way to go.
For more details, I suggest you read matlab's documentation on these specific functions.
And I'll let you figure out how to get the last chalk based on what I've given you :)

Identification of only a part of an image

I want to identify only this marked part in my image. (marked in red)
It should be a scale and translation invariant matching algorithm. Which is the best method I can use?
Will the SIFT method be useful here? As I have observed, it outputs many points. I want only this predefined part to be identified always. Maybe as a blob, or the centroid of this part.
Edit: I am trying to use SIFT from VLFeat. This is the code I am using:
Ia = imread ('Img_1.bmp') ; % Img_1 is the entire wheel's image
Ib = imread ('Img_2.png') ; % Img_2 is a small image containing only the part I want to identify in all images.
Ia = im2single(rgb2gray(Ia)) ;
Ib = im2single(rgb2gray(Ib)) ;
[fa, da] = vl_sift(Ia) ;
[fb, db] = vl_sift(Ib) ;
[matches, scores] = vl_ubcmatch(da, db) ;
After this, how can I view the matched images? As it is shown on the website?
Also, will this method serve my purpose of identifying only the small notch?
How should I proceed after this?

How to fix the edges in the image

I have got a result as shown in the following image. As you can see, there are some edges which are not all straight. I want this image to be similar to this one (I'm not sure why the grey shade appears. Maybe because I manually extracted it?). But, the main thing here is to be similar to the white edges. I tried using morphological operations, but with not much improvements.
Any ideas how to fix this issue?
Thanks.
I loaded your data into a variable called "toBeSolved."
rawData1 = importdata('to be solved.JPG');
[~,name] = fileparts('to be solved.JPG');
newData1.(genvarname(name)) = rawData1;
% Create new variables in the base workspace from those fields.
vars = fieldnames(newData1);
for i = 1:length(vars)
assignin('base', vars{i}, newData1.(vars{i}));
end
Now this is an indexed image so there are 3 frames, as can be seen from:
>> size(toBeSolved)
ans =
452 440 3
The data content of each frame appears to be identical, so maybe all you care about is the grayscale information from 1-frame? If thats the case lets just take the first frame:
data1 = im2double(toBeSolved(:,:,1));
And then normalize the data to the max value in the image:
data1 = data1 / max(data1(:));
Now take a look at a mesh view and we see that, as expected, there is significant noise and corruption around the edges:
The appearance about the edges suggests trying a thresholding operation to the data. I experimented with the threshold value and found that 0.13 produces some improvement:
data2 = double(data1 > 0.13);
which gives:
or the grayscale, imshow(data2):
I don't know if this is acceptable to your application, the edges are not perfect, but it does seem improved over what you started with.
By the way, I checked out your "solved" data as well and that appears to also have the same underlying level of noise and edge defects as the "toBeSolved" file, but at least visually, the corruption in that image is harder to see duo to the gray-scale values around the edges.

How do I detect an instance of an object in an image?

I have an image containing several specific objects. I would like to detect the positions of those objects in this image. To do that I have some model images containing the objects I would like to detect. These images are well cropped around the object instance I want to detect.
Here is an example:
In this big image,
I would like to detect the object represented in this model image:
Since you originally posted this as a 'gimme-da-codez' question, showing absolutely no effort, I'm not going to give you the code. I will describe the approach in general terms, with hints along the way and it's up to you to figure out the exact code to do it.
Firstly, if you have a template, a larger image, and you want to find instances of that template in the image, always think of cross-correlation. The theory is the same whether you're processing 1D signals (called a matched filter in signal processing) or 2D images.
Cross-correlating an image with a known template gives you a peak wherever the template is an exact match. Look up the function normxcorr2 and understand the example in the documentation.
Once you find the peak, you'll have to account for the offset from the actual location in the original image. The offset is related to the fact that cross-correlating an N point signal with an M point signal results in an N + M -1 point output. This should be clear once you read up on cross-correlation, but you should also look at the example in the doc I mentioned above to get an idea.
Once you do these two, then the rest is trivial and just involves cosmetic dressing up of your result. Here's my result after detecting the object following the above.
Here's a few code hints to get you going. Fill in the rest wherever I have ...
%#read & convert the image
imgCol = imread('http://i.stack.imgur.com/tbnV9.jpg');
imgGray = rgb2gray(img);
obj = rgb2gray(imread('http://i.stack.imgur.com/GkYii.jpg'));
%# cross-correlate and find the offset
corr = normxcorr2(...);
[~,indx] = max(abs(corr(:))); %# Modify for multiple instances (generalize)
[yPeak, xPeak] = ind2sub(...);
corrOffset = [yPeak - ..., xPeak - ...];
%# create a mask
mask = zeros(size(...));
mask(...) = 1;
mask = imdilate(mask,ones(size(...)));
%# plot the above result
h1 = imshow(imgGray);
set(h1,'AlphaData',0.4)
hold on
h2 = imshow(imgCol);
set(h2,'AlphaData',mask)
Here is the answer that I was about to post when the question was closed. I guess it's similar to yoda's answer.
You can try to use normalized cross corelation:
im=rgb2gray(imread('di-5Y01.jpg'));
imObj=rgb2gray(imread('di-FNMJ.jpg'));
score = normxcorr2(imObj,im);
imagesc(score)
The result is: (As you can see, the whitest point corresponds to the position of your object.)
The Mathworks has a classic demo of image registration using the same technique as in #yoda's answer:
Registering an Image Using Normalized Cross-Correlation