High availability options for Drools Fusion? - drools

I have been digging and it seems:
1) There is no native/built-in failover solution for Drools Fusion 6
2) There is support for persistent sessions but it appears they are limited to save all/retrieve all, e.g. no ability to efficiently add and remove single events like hibernate would add/remove a single record from a DB. This would be expensive for a large, long running data set (STREAM mode)
3) Persistent sessions is a partial solution and I am unclear how we would even operate a cold/warm/hot standby
On the other hand Storm and Trident handle all aspects of failover but have limited support for CEP, I am debating using a custom solution with storm and storm tick tuples, but hate to reinvent the wheel.

I think in Storm Trident the state has to be relatively simple so it can fit into a key-value(s) pair, and the value cannot be too large. Such as a count or sum or some simple aggregation per key. Most people seem to use some time-based key and total up stuff with Trident. If there is complex state and multiple keys Storm Trident seems to falls down and cannot guarantee fully consistency between all states. Complex event processing keeps rich state such as intermediate pattern matches, derived indexes or data windows for many queries and many contexts. All that doesn't map well to Trident. Depending on your requirements Trident may be good enough.

Related

Real-time processing: Storm / flink vs standard application (java, c#...)

I am wondering about the choice of implementing an application processing events coming from Kafka, I have in mind two architecture patterns:
an application developed using the Apache Storm or Apache Flink framework that would process events consumed from Kafka
a Java application (or python, C#...), deployed X times (scalable depending on traffic), which would process events coming from Kafka
I find it difficult to see which of the scenarios is the most interesting.
Someone could help me on this topic ?
It's hard to give some definitive advice with so little information available. So I leave my response vague until you provide more specific information:
Choosing a processing framework over a native implementation gives you the following advantages:
Parallel processing with (in theory) infinite scalability: If you ever expect that you cannot process all events in a single thread in a timely manner, you first need to scale up (more threads) and eventually scale out (more machines). A frameworks takes care of all synchronization between threads and machines, so you just need to write sequential code glued together with some high-level primitives (similar to LINQ in C#).
Fault tolerance: What happens when your code screws up (some edge case not implemented)? When you run out of resources? When network (to Kinesis or other machines) temporarily breaks? A framework takes care of all these nasty little details.
In case of failure, when you restart application, most frameworks give you some form of exactly once processing: How do you avoid losing data? How do you avoid duplicates when reprocessing old data?
Managed state: If your application needs to remember things for a certain time (calculating sums/average or joining data), how do you ensure that the state is kept in sync with data in case of failure?
Advanced features: time triggers, complex event processing (=pattern matching on events), writing to different sinks (Kafka for low latency, s3 for batch processing)
Flexibility of storage: if you want to try out a different storage system, it's much easier to change source/sink in an application writing in a framework.
Integration in deployment platforms: If you want to scale to several machines, it's usually much easier to scale a platform that already offers related integration (at the time of writing that should be mostly Kubernetes). But all frameworks also support simple local setups where you just scale-up on one (bigger) machine.
Low-level optimizations: When using new engines with higher abstractions, it's possible that the frameworks generate code that is much more efficient than what you can implement yourself (with specific memory layout or serialized data processing).
The big downsides are usually:
Complexity of the framework: you need to understand how the framework works from a user's perspective. However, you usually save time by not going into the details of writing a custom consumer/producer, so it's not as bad as it initially seems.
Flexibility in code: you cannot write arbitrary code anymore. Since the framework handles parallelism for you, you need to think in terms of chunks of data and adjust your algorithms accordingly. Standard SQL operations are usually directly supported though in one form or another.
Less control over resource usage: since the platform schedules the task across machines, you may end up with unfortunate assignments and the platform may give you too little options to fix it. Note that most applications are more intrinsically bound to bad resource utilization because of data skew and suboptimal algorithms though.

Redis Streams for implementing a Messaging System (chat) app versus traditional approaches

I'm implementing a chat app, which will support both one-on-one conversation and Group conversations.
So far the direction was to use Redis Pub/Sub with PostgreSQL as the cold storage, and WebSocket being the transport.
Every user will fetch the history from postgresql upon launch (up until the timestamp of the WebSocket+redis connection), and then subscribe to channels that go by their own user_id.
However, having a roundtrip to a DMBS with each new message sounds a bit strange, while definitely doable and legit.
So I decided to examine other approaches. One possible approach was to use Kafka and eliminate the need for an DBMS altogether.
It sounds viable and comes with its own set of advantages.
But turns out there's a new kid on the block - Redis Streams.
From what I gather, it is actually quite similar to Kafka in this specific scenario (chat).
It has many nice features that sound very convenient for implementing a chat system.
And now I am trying to understand whether Streams + disk persistency is the wise way to go versus Kafka versus PostgreSQL+Redis pub/sub
The main aspects in consideration are:
Performance. Postgres and Kafka both operate on disk, meaning slower than the in-memory operations in the case of redis. On the other hand , obviously the messages must be persisted and available at all times and events, so redis will be persisted to disk. Wouldn't that negate the whole in-memory performance gain?
And even if not - would the performance gain under peak load and a big data base be noticeable?
Memory / Costs. With redis these two are closely tied together. As a small startup, the efforts are focused on being ready to cope with sudden scale peaks (up to a million users), but at the same time - the costs should be minimized.
Is storing millions of messages in Streams going to be too memory-costly which in turn will translate to financially-costly?
Recovery, Reliability & Availability, Persistency. with Postgres, even a single instance can handle a big traffic load, but it can also offer master-slave setups and also consistency. Can Redis be a match to that? Also, with a DMBS I can be assured that the data is there to stay. Can I know that with redis?
Scaling.

Sharing partitioning logic across polyglot producers with Kafka

We are building an event sourced system at my company, relying on Kafka.
In order to be GDPR compliant, we need to be able to update the events.
Our idea is to use the compaction and tombstone capabilities.
This means that we cannot use the default partitioning strategy, as we want each message to have an unique key (in order to overwrite a specific message), but we still want events occuring on the same aggregate to end on the same partition.
Which brings us to the creation of a custom partitioner (basically copying the "hash modulo" logic of the default partitioner, but using a different value than the message key to compute the hash).
The issue is that we're evolving in a polyglot environment (we have php, python and Java/Kotlin services publishing and consuming events).
We want to ensure that all these services will produce messages to the same partition given a specific partition key (in case different services will publish events to the same topic).
Our main idea was to use a common hashing algorithm, but we find it hard to find one with both a strong distribution guarantee and a good stability (not just part of an experimental lib).
PHP natively supports a wide range of hashing algorithms, but we find it hard to find the same support in the other languages.
As Kafka default partitioner relies on murmur2, we started looking in that direction as well. Unfortunately, it is not natively supported by php (although some implementations exist). Furthermore, this algorithm uses a seed, which means that we will need to use the exact same seed for all our publisher services, which is starting to make the approach look quite complex.
However, we could be looking at the design from the wrong angle. Sharing event store write capabilities across polyglot services might not be a good idea and each services could have its own partitioning logic as long as it ensures the "one partition per aggregate" requirement. The thing is that we have to think this ahead, because no technical safeguard will prevent one service in the future to publish on a "shared" event stream (and not using the exact same partitioning logic will have a huge impact when it happens).
Would someone has experience with building an event store with Kafka in a polyglot environment, and could highlight us on this specific topic, please?

Kafka vs. MongoDB for time series data

I'm contemplating on whether to use MongoDB or Kafka for a time series dataset.
At first sight obviously it makes sense to use Kafka since that's what it's built for. But I would also like some flexibility in querying, etc.
Which brought me to question: "Why not just use MongoDB to store the timestamped data and index them by timestamp?"
Naively thinking, this feels like it has the similar benefit of Kafka (in that it's indexed by time offset) but has more flexibility. But then again, I'm sure there are plenty of reasons why people use Kafka instead of MongoDB for this type of use case.
Could someone explain some of the reasons why one may want to use Kafka instead of MongoDB in this case?
I'll try to take this question as that you're trying to collect metrics over time
Yes, Kafka topics have configurable time retentions, and I doubt you're using topic compaction because your messages would likely be in the form of (time, value), so the time could not be repeated anyway.
Kafka also provides stream processing libraries so that you can find out averages, min/max, outliers&anamolies, top K, etc. values over windows of time.
However, while processing all that data is great and useful, your consumers would be stuck doing linear scans of this data, not easily able to query slices of it for any given time range. And that's where time indexes (not just a start index, but also an end) would help.
So, sure you can use Kafka to create a backlog of queued metrics and process/filter them over time, but I would suggest consuming that data into a proper database because I assume you'll want to be able to query it easier and potentially create some visualizations over that data.
With that architecture, you could have your highly available Kafka cluster holding onto data for some amount of time, while your downstream systems don't necessarily have to be online all the time in order to receive events. But once they are, they'd consume from the last available offset and pickup where they were before
Like the answers in the comments above - neither Kafka nor MongoDB are well suited as a time-series DB with flexible query capabilities, for the reasons that #Alex Blex explained well.
Depending on the requirements for processing speed vs. query flexibility vs. data size, I would do the following choices:
Cassandra [best processing speed, best/good data size limits, worst query flexibility]
TimescaleDB on top of PostgresDB [good processing speed, good/OK data size limits, good query flexibility]
ElasticSearch [good processing speed, worst data size limits, best query flexibility + visualization]
P.S. by "processing" here I mean both ingestion, partitioning and roll-ups where needed
P.P.S. I picked those options that are most widely used now, in my opinion, but there are dozens and dozens of other options and combinations, and many more selection criteria to use - would be interested to hear about other engineers' experiences!

Questions about using Apache Kafka Streams to implement event sourcing microservices

Event sourcing means a 180 degree shift in the way many of us have been architecting and developing web applications, with lots of advantages but also many challenges.
Apache Kafka is an awesome platform that through its Apache Kafka Streams API is advertised as a tool that allows us to implement this paradimg through its many features (decoupling, fault tolerance, scalability...): https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-kafka-whats-connection/
On the other hand there are some articles discouraging us from using it for event sourcing: https://medium.com/serialized-io/apache-kafka-is-not-for-event-sourcing-81735c3cf5c
These are my questions regarding Kafka Streams suitability as an event sourcing plaftorm:
The article above comes from Jesper Hammarbäck (who works for serialized.io, an event sourcing platform). I would like to get an answer to the main problems he brings up:
Loading current state. In my view with log compaction and state stores it's not a problem. Am I right?
Consistent writes.
When moving certain pieces of functionality into Kafka Streams I'm not sure if they do fit naturally:
Authentication & Security: Imagine your customers are stored in a state store generated from a customer-topic. Should we keep their passwords in the topic/store? It doesn't sound safe enough, does it? Then how are we supposed to manage this aspect of having customers on a state store and their passwords somewhere else? Any recommended good practice?
Queries: Interactive queries are a nice tool to generate queriable views of our data (by key). That's ok to get an entity by id but what about complex queries (joins)? Do we need to generate state stores per query? For instance one store for customers by id, another one for customers by state, another store for customers who purchased a product last year... It doesn't sound manageable. Another point is the lack of pagination: how can we handle big sets of data when querying the state stores? One more point, we can’t do dynamic queries (like JPA criteria API) anymore. This leads to CQRS maybe? Complexity keeps growing this way...
Data growth: with databases we are used to have thousands and thousands of rows per table. Kafka Streams applications keep a local state store that will grow and grow over time. How scalable is that? How is that local storage kept (local disk/RAM)? If it's disk we should provision applications with enough space, if it's RAM enough memory.
Loading Current State: The mechanism described in the blog, about re-reacting current state ad-hoc for a single entity would indeed be costly with Kafka. However Kafka Streams follow the philosophy to keep the current state for all object in a KTable (that is distributed/sharded). Thus, it's never required to do this -- of course, it come with certain memory costs.
Kafka Streams parallelized based on different events. Thus, all interactions for a single event (processing, state updates) are performed by a single thread. Thus, I don't see why there should be inconsistent writes.
I am not sure what the exact requirement would be. In the current implementation, Kafka Streams does not offer any store specific authentication or security features. There are several things one could do for security though: (a) encrypt the local disk: this might be the simplest thing to do to protect data. (2) encrypt messages within the business logic, before you put them into the store.
Interactive Queries offers limited support for many reasons (don't want to go into details) and it was never design with the goal to support complex queries. The idea is about eager computation of result what can be retrieved with simple lookups. As you pointed out, this is not very scalable (cost intensive) if you have a lot of different queries. To tackle this, it would make sense to load the data into a database, and let the DB does what it is build for. Kafka Streams alone is not the right tool for this atm -- however, there is no reason to not combine both.
Per default Kafka Streams uses RocksDB to keep local state (you can switch to in-memory stores, too). Thus, it's possible to write to disk and to use very large state. Of course, you need to provision your instances accordingly (cf: https://docs.confluent.io/current/streams/sizing.html). Besides this, Kafka Streams scales horizontally and is fully elastic. Thus, you can add new instances at any point in time allowing you to hold terra-bytes of state if you have large disks and enough instances. Note, that the number of input topic partitions limit the number of instances you can use (internally, Kafka Streams is a consumer group, and you cannot have more instances than partitions). If this is a concern, it's recommended to over-partition the input topics in the first place.