This is a follow-up to my previous question. Consider the following puzzle
I would like to generate a waterLevel array, so that the i-th item is the water level at the i-th point and then sum them up to solve the puzzle.
waterLevel[i] =
max(0, min(max of left neighbors, max of right neighbors) - height[i])
I would probably try to code it with Zipper
waterLevels = heights.toZipper.cobind {z =>
max(0, min(max(z.left), max(z.right)) - z.focus
}.toList
Does it make sense ?
My solution with java, it comes with tests with expected solution:
package com.company;
import java.util.*;
enum Orientation {DOWN, UP};
class Walls{
public static void main(String []args){
HashMap<String, Integer> tests = new HashMap<String,Integer>();
tests.put("2 5 1 2 3 4 7 7 6", 10);
tests.put("2 2 5 1 3 1 2 1 7 7 6", 17);
tests.put("2 7 2 7 4 7 1 7 3 7", 18);
tests.put("4 6 7 7 4 3 2 1 5 2", 10);
tests.put("5 2 5 1 2 3 4 7 7 6 2 7 1 2 3 4 5 5 4", 26);
Iterator it = tests.entrySet().iterator();
while (it.hasNext()) {
Map.Entry pairs = (Map.Entry)it.next();
it.remove();
String[] strings = ((String)pairs.getKey()).split(" ");
int[] walls = new int[strings.length];
for (int i = 0; i < walls.length; i++){
walls[i] = Integer.parseInt(strings[i].trim());
}
System.out.println(pairs.getKey()+" result="+accumulatedWater(walls)+" expected= " +pairs.getValue());
}
}
static int accumulatedWater(int []wall){
int MAX = 0;
int start = 0;
for(int i=0;i < wall.length;i++){ //let's go to the first peak
if(wall[i] >= MAX){
MAX = wall[i];
start = i;
}else{
break;
}
}
int []accumulate_max = new int[MAX+1]; // sums up to certain height
int []accumulate_max_step = new int[MAX+1]; // steps up to certain height
Orientation going = Orientation.DOWN;
int prev = MAX;
int local_sum=0;
int total_sum=0;
int PREVPEAK = MAX;
for(int i=start+1; i< wall.length; i++){
if( i == wall.length -1 ||
wall[i] < prev && going == Orientation.UP ){
going = Orientation.DOWN;
if(wall[i-1] >= MAX){
total_sum += accumulate_max_step[MAX-1] * MAX - accumulate_max[MAX-1];
MAX = wall[i-1];
PREVPEAK = MAX;
accumulate_max = new int[MAX+1];
accumulate_max_step = new int[MAX+1];
local_sum = 0;
}else{
int indexNewPeak = (i == wall.length -1 && wall[i]> wall[i-1]) ? i : i-1;
int water = accumulate_max_step[wall[indexNewPeak]-1] * wall[indexNewPeak] - accumulate_max[wall[indexNewPeak]-1];
if(wall[indexNewPeak] > PREVPEAK){
local_sum = water;
PREVPEAK = wall[indexNewPeak];
}else{
local_sum += water;
}
}
}else if(wall[i]>prev){
going = Orientation.UP;
}
for(int j=wall[i];j <= MAX;j++){
accumulate_max[j] += wall[i];
accumulate_max_step[j] += 1;
}
prev = wall[i];
}
return total_sum + local_sum;
}
}
Related
I'm looking for a clean and efficient way to validate an Israeli ID number.
It's basically an implementation of the Luhn algorithm on a 9 digits number.
Note:
This question is here for the community because it wasn't on stack overflow yet.
You can add answers in different coding languages.
Here's an efficient way to implement it in C# (link):
public static bool IsValidIsraeliID(string israeliID)
{
if (israeliID.Length != 9)
return false;
long sum = 0;
for (int i = 0; i < israeliID.Length; i++)
{
var digit = israeliID[israeliID.Length - 1 - i] - '0';
sum += (i % 2 != 0) ? GetDouble(digit) : digit;
}
return sum % 10 == 0;
int GetDouble(long i)
{
switch (i)
{
case 0: return 0;
case 1: return 2;
case 2: return 4;
case 3: return 6;
case 4: return 8;
case 5: return 1;
case 6: return 3;
case 7: return 5;
case 8: return 7;
case 9: return 9;
default: return 0;
}
}
}
JS example code like it appears in Wikipedia:
https://he.wikipedia.org/wiki/ספרת_ביקורת
function IDValidator(id)
{
if (id.length !== 9 || isNaN(id)) { // Make sure ID is formatted properly
return false;
}
let sum = 0, incNum;
for (let i = 0; i < id.length; i++) {
incNum = Number(id[i]) * ((i % 2) + 1); // Multiply number by 1 or 2
sum += (incNum > 9) ? incNum - 9 : incNum; // Sum the digits up and add to total
}
return (sum % 10 === 0);
}
Suppose I have two arrays x = [1,2,3,4,5] and xMean = [3,3,3,3,3]. I composed and encrypted the two array using PolyCRTBuilder ( xCiphertext and xMeanCiphertext ) . If I subtract the two ciphertexts ( xCiphertext MINUS xMeanCiphertext ), I should get xResult = [-2, -1, 0, 1, 2] but after the homomorphic subtraction I am getting xResultDecrypted = [40959, 40960, 0 ,1, 2] . I can relate the overflow result to the plain modulus set but is there a work around for this problem. Here is the code:
int main() {
EncryptionParameters parms;
parms.set_poly_modulus("1x^4096 + 1");
parms.set_coeff_modulus(coeff_modulus_128(4096));
parms.set_plain_modulus(40961);
SEALContext context(parms);
KeyGenerator keygen(context);
auto public_key = keygen.public_key();
auto secret_key = keygen.secret_key();
Encryptor encryptor(context, public_key);
Evaluator evaluator(context);
Decryptor decryptor(context, secret_key);
PolyCRTBuilder crtbuilder(context);
int slot_count = crtbuilder.slot_count();
int row_size = slot_count / 2;
vector<uint64_t> x_pod_matrix(slot_count, 0);
x_pod_matrix[0] = 1;
x_pod_matrix[1] = 2;
x_pod_matrix[2] = 3;
x_pod_matrix[3] = 4;
x_pod_matrix[4] = 5;
Plaintext x_plain_matrix;
crtbuilder.compose(x_pod_matrix, x_plain_matrix);
Ciphertext x_encrypted_matrix;
encryptor.encrypt(x_plain_matrix, x_encrypted_matrix);
vector<uint64_t> x_mean_pod_matrix(slot_count, 0);
x_mean_pod_matrix[0] = 3;
x_mean_pod_matrix[1] = 3;
x_mean_pod_matrix[2] = 3;
x_mean_pod_matrix[3] = 3;
x_mean_pod_matrix[4] = 3;
Plaintext x_mean_plain_matrix;
crtbuilder.compose(x_mean_pod_matrix, x_mean_plain_matrix);
Ciphertext x_mean_encrypted_matrix;
encryptor.encrypt(x_mean_plain_matrix, x_mean_encrypted_matrix);
evaluator.sub_plain(x_encrypted_matrix, x_mean_encrypted_matrix);
// Decrypt x_encrypted_matrix
Plaintext x_plain_result;
decryptor.decrypt(x_encrypted_matrix, x_plain_result);
vector<uint64_t> pod_result;
crtbuilder.decompose(x_plain_result, pod_result);
for(int i = 0; i < 5; i++) {
std::cout << pod_result[i] << '\n';
}
/*
Expected output:
-2
-1
0
1
2
*/
/*
Actual output:
40959
40960
0
1
2
*/
return 0;
}
evaluator.negate() isn't going to help solve my problem.
So, the result you get is correct because the plaintext is only defined modulo plain_modulus. There is an overload of PolyCRTBuilder::decompose that takes a vector of std::int64_t and will automatically do the conversion you are hoping to see.
I have problem converting words into numbers like
Input:
Five Thousand Six Hundred Thirty two
Output:
5632
How can I do this?
Here, i did it in python, it will help you or someone else from algorithmic perspective.
#!/usr/bin/python
__author__ = 'tomcat'
all = {
"one" : 1,
"two" : 2,
"three" : 3,
"four" : 4,
"five" : 5,
"six" : 6,
"seven" : 7,
"eight" : 8,
"nine" : 9,
"ten" : 10,
"eleven": 11,
"twelve": 12,
"thirteen": 13,
"fourteen": 14,
"fifteen": 15,
"sixteen": 16,
"seventeen": 17,
"eighteen": 18,
"nineteen": 19,
"twenty" : 20,
"thirty" : 30,
"forty" : 40,
"fifty" : 50,
"sixty" : 60,
"seventy" : 70,
"eighty" : 80,
"ninety" : 90,
"hundred" : 100,
"thousand" : 1000,
"million" : 1000000,
"billion" : 1000000000,
"trillion" : 1000000000000,
"quadrillion" : 1000000000000000,
"quintillion" : 1000000000000000000,
"sextillion" : 1000000000000000000000,
"septillion" : 1000000000000000000000000,
"octillion" : 1000000000000000000000000000,
"nonillion" : 1000000000000000000000000000000
};
spliter = {
"thousand" : 1000,
"million" : 1000000,
"billion" : 1000000000,
"trillion" : 1000000000000,
"quadrillion" : 1000000000000000,
"quintillion" : 1000000000000000000,
"sextillion" : 1000000000000000000000,
"septillion" : 1000000000000000000000000,
"octillion" : 1000000000000000000000000000,
"nonillion" : 1000000000000000000000000000000
};
inputnumber = raw_input("Please enter string number : ");
tokens = inputnumber.split(" ");
result = 0;
partial_result = 0;
for index in range(len(tokens)):
if tokens[index] in spliter :
if partial_result == 0:
partial_result = 1;
partial_result *= all[tokens[index]];
result += partial_result;
partial_result = 0;
else:
if tokens[index] == "hundred" :
if partial_result == 0:
partial_result = 1;
partial_result *= all[tokens[index]];
else:
partial_result += all[tokens[index]];
result += partial_result;
print result;
How would you do this, in general if you didn't have to code it up?? In this example your collection of words is:
Five Thousand Six Hundred Thirty two
We could convert each of those to numbers to get the following collection:
5 1000 6 100 30 2
Starting from 5 (hint: 5 < 1000 is to the left of 1000. This suggests...!??) what steps would you follow in getting to the number 5632?
What if the number was
Six hundred thirty three billion fifty four million two hundred twenty three thousand four?
Can you figure out some sort of rule (or better, an algorithm)?
Once you have broken the big problem down into a collection of little problems then the next battle is to find the correct way of coding something that correctly solves each little problem
Hope this gives you some start:-
#include <iostream>
#include <string>
#include <map>
using namespace std;
map<string, int> reference;
string ones[] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"};
void storeOnes(){
for(int i = 0; i < 11; i++){
reference[ones[i]] = i;
}
}
int main(){
//set up
storeOnes();
string test = "onetwothreetwofour";
string buffer;
for(int i = 0; i < test.length(); i++){
buffer.push_back(test.at(i));
map<string, int>::iterator it = reference.find(buffer);
if(it != reference.end()){
cout << (*it).second;
buffer = "";
}
}
cout << endl << endl;
system("pause");
return 0;
}
Consider using map. Say five thousand six hundred three ten two.
#include<iostream>
#include<map>
using namespace std;
int main()
{
map<string,int> digits;
digits["one"] = 1;
digits["two"] = 2;
digits["three"] = 3;
digits["four"] = 4;
digits["five"] = 5;
digits["six"] = 6;
digits["seven"] = 7;
digits["eight"] = 8;
digits["nine"] = 9;
digits["ten"] = 10;
digits["hundred"] = 10;
digits["thousand"] = 1000;
const int num_len = 7;
string num_str[num_len]={"five", "thousand", "six", "hundred", "three", "ten", "two"};
int number = digits[num_str[0]]*digits[num_str[1]] +
digits[num_str[2]]*digits[num_str[3]] +
digits[num_str[4]]*digits[num_str[5]] +
digits[num_str[6]];
cout << number;
}
Another way to do this is by recursion as is done here (in java and c++)
https://github.com/jman27182818/words_to_numbers
Most of that code is about parsing the string in order to obtain a string vector which can be acted upon recursively. Essentially the algorithms is
A[] = String array //example {"three","hundred"}
Integer converter(A){
if(length(A) <= 4)
handle_base_case;
//either A only has small values or is of the form
//{"three","billion"}
//if length is greater than 4 the array must have a large value
index = find_first_value_greater_than_100(A);
arrayl = A[1:index-1];
arrayr = A[index+1:A.end()];
return (convert_hundreds(arrayl) * Value_of(A[index])+ converter(arrayr) );
}
where "convert_hundreds" takes an array with strings whose values are no large than 100 each (or 1,000 for spanish) and returns the numerical value. This algorithm is more memory intensive than the previous one but I like it because it seems to generalize to other languages better.
Here's a process in C++
input : nine thousand nine hundred ninety nine
output: 9999
vector 'talika' looks like this:
9 1000 9 100 9 10 9 1
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
bool endswith(string a, string b)
{
//To check if the word ends with ty eg. thirty, forty
int len = a.length();
string last_two = a.substr(len-2, len-1); //ty
if((last_two.compare(b)) == 0)return true;
return false;
}
int main() {
int t,i,j;
int n,cnt, num;
cin >> t;
getchar();
map<string, int>conv;
vector<int>talika;
conv["one"] = 1;
conv["two"] = 2;
conv["three"] = 3;
conv["four"] = 4;
conv["five"] = 5;
conv["six"] = 6;
conv["seven"] = 7;
conv["eight"] = 8;
conv["nine"] = 9;
conv["ten"] = 10;
conv["eleven"] = 11;
conv["twelve"] = 12;
conv["thirteen"] = 13;
conv["fourteen"] = 14;
conv["fifteen"] = 15;
conv["sixteen"] = 16;
conv["seventeen"] = 17;
conv["eighteen"] = 18;
conv["ninteen"] = 19;
conv["thousand"] = 1000;
conv["hundred"] = 100;
conv["twenty"] = 20;
conv["thirty"] = 30;
conv["forty"] = 40;
conv["fifty"] = 50;
conv["sixty"] = 60;
conv["seventy"] = 70;
conv["eighty"] = 80;
conv["ninety"] = 90;
while(t--)
{
string num_in_word, ongsho;
getline(cin,num_in_word);//get the number in words
stringstream x(num_in_word);
bool sheshe_ty = false;
while(getline(x,ongsho, ' '))
{
num = conv[ongsho];
if(endswith(ongsho,"ty"))
{
talika.push_back(num/10);
talika.push_back(10);
sheshe_ty = true;
continue;
}
talika.push_back(num);
sheshe_ty = false;
}
if(conv[ongsho] != 1000 && conv[ongsho] != 100 && sheshe_ty == false){
talika.push_back(1);
}
num = 0;
for(i=0;i < talika.size();i++)
{
num += talika[i] * talika[i+1];
i++;
}
cout << "The Number: " << num << endl;
talika.clear();
}
return 0;
}
This may help :
#include <bits/stdc++.h>
using namespace std;
/*
* Complete the 'getPhoneNumber' function below.
*
* The function is expected to return a STRING.
* The function accepts STRING s as parameter.
*/
string wordsToNumber(string s)
{
vector<string> allStringNums{"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
vector<string> operations{"double", "triple"};
string search;
string ans = "";
int op = 0;
for (int i = 0; i < s.length(); i++)
{
if (i == s.length() - 1)
{
search.push_back(s.at(i));
}
if (isspace(s[i]) || i == s.length() - 1)
{
// cout << search << endl;
auto it = find(allStringNums.begin(), allStringNums.end(), search);
if (it != allStringNums.end())
{
if (op > 0)
{
for (int j = 0; j < op; j++)
{
ans += to_string(it - allStringNums.begin());
}
op = 0;
}
else
{
ans += to_string(it - allStringNums.begin());
}
}
else
{
it = find(operations.begin(), operations.end(), search);
if (it != operations.end())
{
op = (it - operations.begin()) + 2;
}
// cout << it - operations.begin() << " " << op << endl;
}
search = "";
}
else
{
search.push_back(s.at(i));
}
}
cout << ans << endl;
return ans;
}
int main()
{
ofstream fout(getenv("OUTPUT_PATH"));
string s;
getline(cin, s);
string result = wordsToNumber(s);
fout << result << "\n";
fout.close();
return 0;
}
Input Will Be Like one two three four nine five three one or
something like one two double three five six triple four six nine
Their Outputs Will Be 12349531 and 123356444469
This is a simple number series question, I have numbers in series like
2,4,8,16,32,64,128,256 these numbers are formed by 2,2(square),2(cube) and so on.
Now if I add 2+4+8 = 14. 14 will get only by the addition 2,4 and 8.
so i have 14in my hand now, By some logic i need to get the values which are helped to get 14
Example:
2+4+8 = 14
14(some logic) = 2,4,8.
This is an easy one:
2+4+8=14 ... 14+2=16
2+4+8+16=30 ... 30+2=32
2+4+8+16+32=62 ... 62+2=64
So you just need to add 2 to your sum, then calculate ld (binary logarithm), and then subtract 1. This gives you the number of elements of your sequence you need to add up.
e.g. in PHP:
$target=14;
$count=log($target+2)/log(2)-1;
echo $count;
gives 3, so you have to add the first 3 elements of your sequence to get 14.
Check the following C# code:
x = 14; // In your case
indices = new List<int>();
for (var i = 31; i >= i; i--)
{
var pow = Math.Pow(2, i);
if x - pow >= 0)
{
indices.Add(pow);
x -= pow;
}
}
indices.Reverse();
assuming C:
unsigned int a = 14;
while( a>>=1)
{
printf("%d ", a+1);
}
if this is programming, something like this would suffice:
int myval = 14;
int maxval = 256;
string elements = "";
for (int i = 1; i <= maxval; i*=2)
{
if ((myval & i) != 0)
elements += "," + i.ToString();
}
Use congruency module 2-powers: 14 mod 2 = 0, 14 mod 4 = 2, 14 mod 8 = 6, 14 mod 16 = 14, 14 mod 32 = 14...
The differences of this sequence are the numbers you look for 2 - 0 = 2, 6 - 2 = 4, 14 - 6 = 8, 14 - 14 = 0, ...
It's called the p-adic representation and is formally a bit more difficult to explain, but I hope this gives you an idea for an algorithm.
I was puzzled with one of the question in Microsoft interview which is as given below:
A function should accept a range( 3 - 21 ) and it should print all the consecutive numbers combinations to form each number as given below:
3 = 1+2
5 = 2+3
6 = 1+2+3
7 = 3+4
9 = 4+5
10 = 1+2+3+4
11 = 5+6
12 = 3+4+5
13 = 6+7
14 = 2+3+4+5
15 = 1+2+3+4+5
17 = 8+9
18 = 5+6+7
19 = 9+10
20 = 2+3+4+5+6
21 = 10+11
21 = 1+2+3+4+5+6
could you please help me in forming this sequence in C#?
Thanks,
Mahesh
So here is a straightforward/naive answer (in C++, and not tested; but you should be able to translate). It uses the fact that
1 + 2 + ... + n = n(n+1)/2,
which you have probably seen before. There are lots of easy optimisations that can be made here which I have omitted for clarity.
void WriteAsSums (int n)
{
for (int i = 0; i < n; i++)
{
for (int j = i; j < n; j++)
{
if (n = (j * (j+1) - i * (i+1))/2) // then n = (i+1) + (i+2) + ... + (j-1) + j
{
std::cout << n << " = ";
for (int k = i + 1; k <= j; k++)
{
std::cout << k;
if (k != j) // this is not the interesting bit
std::cout << std::endl;
else
std::cout << " + ";
}
}
}
}
}
This is some pseudo code to find all the combinations if any exists:
function consecutive_numbers(n, m)
list = [] // empty list
list.push_back(m)
while m != n
if m > n
first = list.remove_first
m -= first
else
last = list.last_element
if last <= 1
return []
end
list.push_back(last - 1)
m += last - 1
end
end
return list
end
function all_consecutive_numbers(n)
m = n / 2 + 1
a = consecutive_numbers(n, m)
while a != []
print_combination(n, a)
m = a.first - 1
a = consecutive_numbers(n, m)
end
end
function print_combination(n, a)
print(n + " = ")
print(a.remove_first)
foreach element in a
print(" + " + element)
end
print("\n")
end
A call to all_consecutive_numbers(21) would print:
21 = 11 + 10
21 = 8 + 7 + 6
21 = 6 + 5 + 4 + 3 + 2 + 1
I tested it in ruby (code here) and it seems to work. I'm sure the basic idea could easily be implemented in C# as well.
I like this problem. Here is a slick and slightly mysterious O(n) solution:
void DisplaySum (int n, int a, int b)
{
std::cout << n << " = ";
for (int i = a; i < b; i++) std::cout << i << " + ";
std::cout << b;
}
void WriteAsSums (int n)
{
N = 2*n;
for (int i = 1; i < N; i++)
{
if (~(N%i))
{
int j = N/i;
if (j+i%2)
{
int a = (j+i-1)/2;
int b = (j-i+1)/2;
if (a>0 & a<b) // exclude trivial & negative solutions
DisplaySum(n,a,b);
}
}
}
}
Here's something in Groovy, you should be able to understand what's going on. It's not the most efficient code and doesn't create the answers in the order you cite in your question (you seem to be missing some though) but it might give you a start.
def f(a,b) {
for (i in a..b) {
for (j in 1..i/2) {
def (sum, str, k) = [ 0, "", j ]
while (sum < i) {
sum += k
str += "+$k"
k++
}
if (sum == i) println "$i=${str[1..-1]}"
}
}
}
Output for f(3,21) is:
3=1+2
5=2+3
6=1+2+3
7=3+4
9=2+3+4
9=4+5
10=1+2+3+4
11=5+6
12=3+4+5
13=6+7
14=2+3+4+5
15=1+2+3+4+5
15=4+5+6
15=7+8
17=8+9
18=3+4+5+6
18=5+6+7
19=9+10
20=2+3+4+5+6
21=1+2+3+4+5+6
21=6+7+8
21=10+11
Hope this helps. It kind of conforms to the tenet of doing the simplest thing that could possibly work.
if we slice a into 2 digit, then a = b + (b+1) = 2*b + (0+1)
if we slice a into 3 digit, then a = b + (b+1) + (b+2) = 3*b + (0+1+2)
...
if we slice a into n digit, then a = b + (b+1) +...+ (b+n) = nb + (0+1+n-1)
the last result is a = nb + n*(n-1)/2, a,b,n are all ints.
so O(N) Algorithm is:
void seq_sum(int a)
{
// start from 2 digits
int n=2;
while(1)
{
int value = a-n*(n-1)/2;
if(value < 0)
break;
// meet the quotation we deduct
if( value%n == 0 )
{
int b=value/n;
// omit the print stage
print("......");
}
n++;
}
}