Free Applicative in Scala - scala

Looking through the haskell free package (http://hackage.haskell.org/package/free-3.4.2) there's a few types that seem simple and useful, that I see almost no literature on outside of haskell, the type I'm interested in now is the Free Applicative.
Now I think that the free applicative builds up chains of function applications as data and maps them (out-of / over) G, (I think...)
where I'm at ...
trait Functor[F[_]] {
def map[A, B](f: A => B): F[A] => F[B]
}
trait Applicative[F[_]] extends Functor[F] {
def ap[A, B](f: F[A => B]): F[A] => F[B]
def apF[A, B](f: F[A])(x: F[A => B]): F[B]
}
trait FreeAp[F[_], A] {
def map[B](f: A => B): FreeAp[F, B] = {
this match {
case Pure(x) => Pure(f(x))
case Ap(x, y) => Ap(x, { y.map(f.compose _) })
}
}
def runAp[G[_]](phi: F ~> G, fa: FreeAp[F, A])(implicit G: Applicative[G]): G[A] = {
fa match {
case Pure(x) => G.pure(x)
case Ap(f, x) => G.apF(phi(f)) { G.map(id[A])(runAp(phi, x)) }
}
}
def runApM[B, M](phi: F ~> ({ type l[x] = M })#l, x: FreeAp[F, B])(implicit M: Monoid[M]): M = {
???
}
}
case class Pure[F[_], A](x: A) extends FreeAp[F, A]
case class Ap[F[_], A, B](x: F[A], y: FreeAp[F, A => B]) extends FreeAp[F, B]
what I'm asking for: the runAp looks so simple in haskell but I've been having some trouble translating... I need a shove in the right direction
runAp :: Applicative g => (forall x. f x -> g x) -> Ap f a -> g a
runAp _ (Pure x) = pure x
runAp u (Ap f x) = flip id <$> u f <*> runAp u x
Ideally I'd like a gentle walk through the free applicative and some help with at least the runAp implementation (but really get into it and spare no detail)
update: so I've been working with this myself and I tried implementing map and I get a variance error, the second case expression gives an error unless FreeAp is contravariant in A, but the first case expression gives an error unless FreeAp isn't contravariant in A...
Any Ideas ?
update: I added the variance annotations from #Cirdec's answer and it didn't suddenly work but I played around and added a annotation [Any, B] to the Ap construction in map and now that definition type checks. so far though no luck with runAp...
update: this is the type error I'm getting on the Ap branch of the runAp pattern match ...
type mismatch; found : core01.FreeAp[F,Any => A] required: core01.FreeAp[F,A]
////
trait Forall[P[_]] {
def apply[A]: P[A]
}
trait ~>[F[_], G[_]] {
def apply[A](x: F[A]): G[A]
}
UPDATE
reading:
http://ro-che.info/articles/2013-03-31-flavours-of-free-applicative-functors.html,
Free Applicative Functors by Paolo Capriotti
//// including the Functor & Applicative definitions above
trait FreeAp[F[_], A] { self =>
def map[B](f: A => B): FreeAp[F, B] = {
this match {
case Pure(x) => Pure(f(x))
case ap: Ap[F, α, _] => Ap(ap.x.map(f.compose(_: α => A)), ap.y)
}
}
}
case class Pure[F[_], A](x: A) extends FreeAp[F, A]
case class Ap[F[_], A, B](x: FreeAp[F, A => B], y: F[A]) extends FreeAp[F, B]
def liftAp[F[_], A](x: F[A]): FreeAp[F, A] = Ap[F, A, A](Pure(id), x)
def runAp[F[_], G[_], A](implicit G: Applicative[G]): (F ~> G) => FreeAp[F, A] => G[A] = {
(u: F ~> G) =>
(fa: FreeAp[F, A]) => fa match {
case Pure(x) => G.pure(x)
case ap: Ap[F, α, _] => {
val gf: G[(α => A) => A] = G.map(curry(flip(id[α => A])))(u(ap.y))
val gx: G[α => A] = runAp(G)(u)(ap.x)
G.ap(gf)(gx)
}
}
}
trait FreeApFunctor[F[_]] extends Functor[({ type l[x] = FreeAp[F, x] })#l] {
final override def map[A, B](f: A => B): FreeAp[F, A] => FreeAp[F, B] = _ map f
}
trait FreeApSemiapplicative[F[_]] extends Apply[({ type l[x] = FreeAp[F, x] })#l] with FreeApFunctor[F] {
final def ap[A, B](f: => FreeAp[F, A => B]): FreeAp[F, A] => FreeAp[F, B] = {
(fa: FreeAp[F, A]) => f match {
case Pure(x) => map(x)(fa)
case a: Ap[F, α, _] => Ap(ap{ map(flip[α, A, B])(a.x) }(fa), a.y)
}// ^^^
// type mismatch; found : core01.FreeAp[F,α => _] required: core01.FreeAp[F,(α, A) => B]
}
}

Traits
First, you'll need to get what Applicative and Functor are correct. Let's start with Functor. I'm going to use the Haskell names and argument orders for everything, where I can:
class Functor f where
fmap :: (a -> b) -> f a -> f b
trait Functor[F[+_]] {
def fmap[A,B]: (A => B) => F[A] => F[B]
}
Now Applicative. Your Applicative is missing that an Applicative first must be a Functor and that an Applicative has a way to make one from a value. The type for apF also seems to be incorrect; it should allow you to apply a function that is stuck inside the functor to a value that is also stuck inside the functor.
class Functor f => Applicative f where
pure :: a-> f a
(<*>) :: f (a -> b)-> f a -> f b
trait Applicative[F[+_]] extends Functor[F] {
def pure[A]: A => F[A]
def apF[A,B]: F[A => B] => F[A] => F[B]
}
I'd suggest you make something else that's applicative before jumping all the way to free applicative, perhaps the Identity functor and its applicative instance. Hopefully this will help you understand what you need to be making for the free applicative instance.
Data Types and Variance
Now we need the data types.
data Ap f a where
Pure :: a -> Ap f a
Ap :: f a -> Ap f (a -> b) -> Ap f b
In Scala, these are represented by case classes:
sealed abstract class FreeAp[F[+_],+A]
case class Pure[F[+_], +A](a: A) extends FreeAp[F, A]
case class Ap[F[+_], A, +B](x: F[A], fg: FreeAp[F,A=>B]) extends FreeAp[F, B]
In order for Scala's variant types to work, we annotated these with variance, and marked the variance correctly on our traits as well. This is normal in languages with variant type systems, a similar interface in c# would require in and out annotation to be generally useful and match the expectations of programmers using libraries. If you really hate variance, you can remove all the variance annotations from my answer, and it still works - you just won't have variant interfaces.
Instances
We can start porting the instances for Functor and Applicative:
instance Functor (Ap f) where
fmap f (Pure a) = Pure (f a)
fmap f (Ap x y) = Ap x ((f .) <$> y)
instance Applicative (Ap f) where
pure = Pure
Pure f <*> y = fmap f y
Ap x y <*> z = Ap x (flip <$> y <*> z)
Functor and Applicative Instances
A functor instance in Scala is difficult to write, due to the fact that there aren't really universally quantified types. With universally quantified types, flip and compose could both be used below without explicit types. We can get around this by binding a type variable, a, in pattern matching, which is done by the pattern ap: Ap[F,a,_]. The type variable is used to provide the explicit types .compose(_ : a => A) and flip[a,A,B].
class FreeApInstances[F[+_]] {
implicit object FreeApApplicativeInstance extends Applicative[({type f[+x] = FreeAp[F, x]})#f] {
// Functor
final def fmap[A,B]: (A=>B) => FreeAp[F,A] => FreeAp[F,B] =
(f: A=>B) => (fa: FreeAp[F,A]) => fa match {
case Pure(a) => Pure(f(a))
case ap: Ap[F, a, _] => Ap(ap.x, fmap(f.compose(_ : a => A))(ap.fg))
}
// Applicative
final def pure[A]: A => FreeAp[F,A] =
(a: A) => Pure(a)
final def apF[A, B]: FreeAp[F,A=>B] => FreeAp[F,A] => FreeAp[F,B] =
(ff: FreeAp[F,A=>B]) => (fa: FreeAp[F,A]) => ff match {
case Pure(f) => fmap(f)(fa)
case ap: Ap[F, a, _] => Ap(ap.x, apF(fmap(flip[a,A,B])(ap.fg))(fa))
}
}
}
flip, which is needed for Applicative, just flips the order of two arguments:
def flip[A,B,C]: (A => B => C) => B => A => C =
(f: (A => B => C)) => (b: B) => (a: A) => f(a)(b)
runAp
Finally, we can port runAp:
-- | Given a natural transformation from #f# to #g#, this gives a canonical monoidal natural transformation from #'Ap' f# to #g#.
runAp :: Applicative g => (forall x. f x -> g x) -> Ap f a -> g a
runAp _ (Pure x) = pure x
runAp u (Ap f x) = flip id <$> u f <*> runAp u x
This requires a universal quantification for forall x. f x -> g x. We can satisfy this one with the usual trick for languages with generics - add a generic member to something; the member can then provide something for all types, though we will need to be able to explicitly provide the type. You have clearly already found a Scala type for natural transformations:
trait ~>[F[_],G[_]] { def apply[B](f: F[B]): G[B] }
Again, we'll bind a type variable a from the pattern ap: Ap[F, a _] to get the type that Scala can't infer, id: (a=>A) => a => A.
def runAp[F[_],G[_],A](implicit g: Applicative[G]):
(F ~> G) => FreeAp[F,A] => G[A] =
(u: F ~> G) => (fa: FreeAp[F,A]) => fa match {
case Pure(x) => g.pure(x)
case ap: Ap[F, a, _] => {
val gf: G[(a=>A)=>A] = g.fmap(flip(id[a=>A]))(u.apply(ap.x))
val gx: G[a=>A] = runAp(g)(u)(ap.fg)
g.apF(gf)(gx)
}
}
id is just the identity function:
def id[A]: A => A =
(x:A) => x

Related

Pattern matching on classes containing generalized type constraints

I have a trait that is extended by multiple subclasses
trait Sup
case class Sub[A, B](a: A, f: B => B)(implicit val ev: A =:= B) extends Sup
case class Sub2[A, B](a: A, f: B => Unit)(implicit val ev: A =:= B) extends Sup
And two functions:
def foo[A, B](a: A, f: B => B)(implicit ev: A =:= B) = f(a)
def bar[A, B](a: A, f: B => Unit)(implicit ev: A =:= B) = f(a)
Now I can do some form of dynamic dispatching and call foo if the object is a Sub and bar if the object is a Sub2.
def dispatch(obj: Sup) = {
obj match {
case Sub(a, f) => foo(a, f)
case Sub2(a, f) => bar(a, f) // type mismatch: found: Nothing => Unit. required: B => Unit
}
}
I've also tried to pass the evidence explicitly but it results in the same error:
case o # Sub2(a, f) => bar(a, f)(o.ev) // type mismatch
It is very weird that f: B => B works (I can call foo), but f: B => Unit doesn't work (I can't call bar).
Not an answer but something to think about:
case class Sub1[A, B](a: A, f: B => B)
case class Sub2[A, B](a: A, f: B => Unit)
def foo[A, B](a: A, f: B => B)(implicit ev: A =:= B) = f(a)
def bar[A, B](a: A, f: B => Unit)(implicit ev: A =:= B) = f(a)
def dispatch(obj: Any) = obj match {
case Sub1(a, f) => foo(a, f)
case Sub2(a, f) => bar(a, f) // type mismatch: found: Nothing => Unit. required: B => Unit
}
This code have the same problem as yours but Sub1 and Sub2 case classes don't even have implicit blocks.
implicit section in case class doesn't effect pattern resolution. This section is just syntax sugar for calling apply(a: A, f: B => B)(implicit val ev: A =:= B) method on Sub1/2's companion objects. Pattern matching use unapply method to match the pattern at runtime and this unapply don't even know about evidences.
But I'm still wondering why first case is compiled without having this evidence.
Edit: Adding helpful comment from #AlexeyRomanov
More type inference than type erasure. But yes, the compiler infers type Any for a and Any => Any for f and then produces and uses evidence that Any =:= Any. In the second case it infers Nothing => Unit for f, because B => Unit is contravariant in B, and fails to find Any =:= Nothing.
You can actually make it work using type variable patterns:
def dispatch(obj: Sup) = {
obj match {
case obj: Sub[a, b] => foo(obj.a, obj.f)(obj.ev)
case obj: Sub2[a, b] => bar(obj.a, obj.f)(obj.ev)
}
}
This part is an answer to the comments, because it doesn't really fit in there:
Btw, there is still one subtlety I do not get: why is B => Unit contravariant in B
what is compiler's logic for this Nothing => Unit inference staff
You need to start with function variance. X => Y is a subtype of X1 => Y1 if and only if X is a supertype of X1 and Y is a subtype of Y1. We say it's contravariant in X and covariant in Y.
So if you fix Y = Unit, what remains is just contravariant in X. Any => Unit is a subtype of String => Unit, which is a subtype of Nothing => Unit. In fact, Nothing => Unit is the most general of all B => Unit, and that's why it gets inferred in the Sub2 case.
and B => B not (since it infers Any => Any) ?
The situation with B => B is different: String => String is neither a subtype nor a supertype of Any => Any, or of Nothing => Nothing. That is, B => B is invariant. So there is no principled reason to infer any specific B, and in this case the compiler uses the upper bound for B (Any), and B => B becomes Any => Any.

How to Remove Explicit Casting

How do I remove explicit casting asInstanceOf[XList[B]] in Cons(f(a), b).asInstanceOf[XList[B]] inside map function? Or perhaps redesign reduce and map functions altogether? Thanks
trait XList[+A]
case object Empty extends XList[Nothing]
case class Cons[A](x: A, xs: XList[A]) extends XList[A]
object XList {
def apply[A](as: A*):XList[A] = if (as.isEmpty) Empty else Cons(as.head, apply(as.tail: _*))
def empty[A]: XList[A] = Empty
}
def reduce[A, B](f: B => A => B)(b: B)(xs: XList[A]): B = xs match {
case Empty => b
case Cons(y, ys) => reduce(f)(f(b)(y))(ys)
}
def map[A, B](f: A => B)(xs: XList[A]): XList[B] = reduce((b: XList[B]) => (a: A) => Cons(f(a), b).asInstanceOf[XList[B]])(XList.empty[B])(xs)
You can merge two argument lists into one by replacing )( by ,:
def reduce[A, B](f: B => A => B, b: B)(xs: XList[A]): B = xs match {
case Empty => b
case Cons(y, ys) => reduce(f, f(b)(y))(ys)
}
def map[A, B](f: A => B)(xs: XList[A]): XList[B] =
reduce((b: XList[B]) => (a: A) => Cons(f(a), b), XList.empty[B])(xs)
This will force the type inference algorithm to consider both first arguments of reduce before making up its mind about what B is supposed to be.
You can either widen Cons to a XList[B] at the call site by providing the type parameters explicitly:
def map[A, B](f: A => B)(xs: XList[A]): XList[B] =
reduce[A, XList[B]]((b: XList[B]) => (a: A) => Cons(f(a), b))(XList.empty[B])(xs)
Or use type ascription:
def map[A, B](f: A => B)(xs: XList[A]): XList[B] =
reduce((b: XList[B]) => (a: A) => Cons(f(a), b): XList[B])(XList.empty[B])(xs)
As a side note, reduce is traditionally more strict at the method definition than what you've written. reduce usually looks like this:
def reduce[A](a0: A, a: A): A
Implicitly requiring a non empty collection to begin with. What you've implemented is similar in structure to a foldLeft, which has this structure (from Scalas collection library):
def foldLeft[B](z: B)(op: (B, A) => B): B

Scala pass a generic function into another generic function confusion

I'm implementing the List type in Scala when following a book.
Here's the definition of my List type:
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
All the later mentioned functions are defined in the companion object List in the same file
object List
I wrote foldLeft and foldRight as the following
def foldLeft[A,B](l: List[A], z: B)(f: (B, A) => B): B = l match {
case Nil => z
case Cons(x, xs) => foldLeft(xs, f(z, x))(f)
}
def foldRight[A,B](l: List[A], z: B)(f: (A, B) => B): B = l match {
case Nil => z
case Cons(x, xs) => f(x, foldRight(xs, z)(f))
}
There's an exercise on the book, which is to implement foldLeft using foldRight. Here's my initial implementation
def foldLeftWithRight[A,B](l: List[A], z: B)(f: (B, A) => B): B = {
foldRight(l, z)((a: A, b: B) => f(b, a))
}
Then I think I should write another function to do the reverse arguments if I'm to implement foldRight using foldLeft. As follows:
def reverseArgs[A,B](f: (A, B) => B): (B, A) => B = {
(b: B, a: A) => f(a, b)
}
So I changed code of foldLeftWithRight to the following:
def foldLeftWithRight[A,B](l: List[A], z: B)(f: (B, A) => B): B = {
foldRight(l, z)(reverseArgs(f))
}
And IntelliJ is complaining about reverseArgs(f):
Type mismatch: expected (A, B) => B, actual (B, B) => B
When I try to compile the code, the error is the following:
Error:(21, 37) type mismatch;
found : (B, A) => B
required: (B, Any) => Any
foldRight(l, z)(reverseArgs(f))
An interesting observation is that when I use the reverseArgs on foldRightWithLeft, there's no problem at all:
def foldRightWithLeft[A,B](l: List[A], z: B)(f: (A, B) => B): B = {
foldLeft(l, z)(reverseArgs(f))
}
What is going on here?
If you rename type parameters of your reverseArgs function to X and Y, you'll get something like
def reverseArgs[X ,Y](f: (X, Y) => Y): (Y, X) => Y = ???
Type of f in foldLeftWithRight is (B, A) => B. Passing that to reverseArgs means that:
X = B
Y = A
Y = B
I guess Intellij infers from here that A = B and this is why it's complaining that (B, B) => B isn't (A, B) => B. Scalac decides that Y = Any instead, because it's the least upper bound of two potentially unrelated types.
Good solution here is to generalize more. Return type of reversed function does not have to be one of parameter types, so you can introduce another generic type for that:
def reverseArgs[X ,Y, Z](f: (X, Y) => Z): (Y, X) => Z = {
(b: Y, a: X) => f(a, b)
}

Composing Free monads in Scala

I think I understand what Free monad is. I hope I understand also that functors compose but monads do not, i.e. if M1 and M2 are monads then M1[M2] is not necessarily a monad.
My questions are:
Do Free monads compose ?
Suppose we have functors F1 and F2 and their composition F1[F2]. Suppose also we have Free1 and Free2 -- Free monads for F1 and F2. Can we define a Free monad for F1[F2] with just Free1 and Free2 ?
Hopefully I can answer your question:
Do Free monads compose?
No. For the same reasons as "normal" monads don't. To write monadic bind we need to know something about the underlying monad, or about the underlying functor in a free monad case.
Hopefully the Haskell syntax doesn't scare you too much:
type X f g a = Free f (Free g a)
bind :: X f g a -> (a -> X f g b) -> X f g b
bind (Pure (Pure x)) k = k x
bind (Pure (Free f)) k = error "not implemented"
bind _ = error "we don't even consider other cases"
In the second case we have f :: g (Free g a) and k :: a -> Free f (Free g b). We could fmap, as it's the only thing we can do:
bind (Pure (Free f)) k = let kf = fmap (fmap k) f -- fmapping inside g ∘ Free g
in = error "not implement"
The type of kf will be: g (Free g (Free f (Free g b))), when we'd need Free f (Free g b). You'll arrive at the same problem as when writing a monad instance for any Compose m1 m2, we'd need to reorder "bind layers" from g-g-f-g to f-g-g-g, and to do that commutation we need to know more about f and g.
Please comment, if you want to see the Scala version of above. It will be much more obscure though :(
Can we define a Free monad for F1[F2] with just Free1 and Free2
In other words given:
type Free1[A] = Free[F1, A]
type Free2[A] = Free[F2, B]
type FreeDist[A] = Free1[Free2[A]] = Free[F1, Free[F2, A]]
type FreeComp[A] = Free[F1[F2[_]], A]
Could we write a monad homomorphism (a good mapping) from FreeDist[A] to FreeComp[A]? We can't, for the same reasons as in a previous part.
Scala version
Scalaz has private definitions of subclasses of Free, so I have to implement Free myself to have an "runnable" example. Some of the code scrapped from http://eed3si9n.com/learning-scalaz/Free+Monad.html
First simplest definition of Free in Scala:
import scala.language.higherKinds
trait Functor[F[_]] {
def map[A, B](x: F[A])(f: A => B): F[B]
}
sealed trait Free[F[_], A] {
def map[B](f: A => B)(implicit functor: Functor[F]): Free[F, B]
def flatMap[B](f: A => Free[F, B])(implicit functor: Functor[F]): Free[F, B]
}
case class Pure[F[_], A](x: A) extends Free[F, A] {
def map[B](f: A => B)(implicit functor: Functor[F]): Free[F, B] = Pure[F, B](f(x))
def flatMap[B](f: A => Free[F, B])(implicit functor: Functor[F]): Free[F, B] = f(x)
}
case class Bind[F[_], A](x: F[Free[F, A]]) extends Free[F, A] {
def map[B](f: A => B)(implicit functor: Functor[F]): Free[F, B] = Bind {
functor.map[Free[F,A], Free[F,B]](x) { y => y.map(f) }
}
// omitted
def flatMap[B](f: A => Free[F, B])(implicit functor: Functor[F]): Free[F, B] = ???
}
Using that we can translate the Haskell example into Scala:
type X[F[_], G[_], A] = Free[F, Free[G, A]]
// bind :: X f g a -> (a -> X f g b) -> X f g b
def xFlatMap[F[_], G[_], A, B](x: X[F, G, A], k: A => X[F, G, B])(implicit functorG: Functor[G]): X[F, G, B] =
x match {
case Pure(Pure(y)) => k(y)
case Pure(Bind(f)) => {
// kf :: g (Free g (Free f (Free g b)))
val kf: G[Free[G, Free[F, Free[G, B]]]] = functorG.map(f) { y => y.map(k) }
// But we need Free[F, Free[G, B]]
???
}
// we don't consider other cases
case _ => ???
}
The result is the same, we can't make types match, We'd need transform Free[G, Free[F, A]] into Free[F, Free[G, A]] somehow.

Is it possible to implement liftM2 in Scala?

In Haskell, liftM2 can be defined as:
liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 f m1 m2 = do
x1 <- m1
x2 <- m2
return $ f x1 x2
I'd like to translate this to Scala. My first attempt was the following:
def liftM2[T1, T2, R, M[_]](f: (T1, T2) => R)(ma: M[T1], mb: M[T2]) : M[R] = for {
a <- ma
b <- mb
} yield f(a, b)
This fails in what I guess is the most obvious way possible: "value flatMap is not a member of type parameter M[T1]". Right, I haven't indicated that M[_] is some kind of monad. So the next thing I tried was to define some structural type like:
type Monad[A] = {
def flatMap[B](f: (A) => Monad[B]): Monad[B]
}
... and to have M[A] <: Monad[A]. But that doesn't work, because Scala doesn't have recursive structural types.
So the next few things I tried involved gyrations similar to M[A] <: FilterMonadic[A, _]. Those all failed, probably because I wasn't able to figure out the right implicit-fu for CanBuildFrom.
The most closely-related question I could find here on StackOverflow was this one, touching both on recursive structural types and how to mimic Haskell's typeclasses in Scala. But that approach requires defining an implicit conversion from each type you care about to the trait defining the typeclass, which seems terribly circular in this case...
Is there any good way to do what I'm trying to do?
The usual way to encode type classes in Scala turns out to follow Haskell pretty closely: List doesn't implement a Monad interface (as you might expect in an object-oriented language), but rather we define the type class instance in a separate object.
trait Monad[M[_]] {
def point[A](a: => A): M[A]
def bind[A, B](ma: M[A])(f: A => M[B]): M[B]
def map[A, B](ma: M[A])(f: A => B): M[B] = bind(ma)(a => point(f(a)))
}
implicit object listMonad extends Monad[List] {
def point[A](a: => A) = List(a)
def bind[A, B](ma: List[A])(f: A => List[B]) = ma flatMap f
}
This idea is introduced in Poor Man's Type Classes and explored more deeply in Type Classes as Objects and Implicits. Notice that the point method could not have been defined in an object-oriented interface, as it doesn't have M[A] as one of it's arguments to be converted to the this reference in an OO encoding. (Or put another way: it can't be part of an interface for the same reason a constructor signature can't be represented in an interface.)
You can then write liftM2 as:
def liftM2[M[_], A, B, C](f: (A, B) => C)
(implicit M: Monad[M]): (M[A], M[B]) => M[C] =
(ma, mb) => M.bind(ma)(a => M.map(mb)(b => f(a, b)))
val f = liftM2[List, Int, Int, Int](_ + _)
f(List(1, 2, 3), List(4, 5)) // List(5, 6, 6, 7, 7, 8)
This pattern has been applied extensively in Scalaz. Version 7, currently in development, includes an index of the type classes.
In addition to providing type classes and instances for standard library types, it provides a 'syntactic' layer that allows the more familiar receiver.method(args) style of method invocation. This often affords better type inference (accounting for Scala's left-to-right inference algorithm), and allows use of the for-comprehension syntactic sugar. Below, we use that to rewrite liftM2, based on the map and flatMap methods in MonadV.
// Before Scala 2.10
trait MonadV[M[_], A] {
def self: M[A]
implicit def M: Monad[M]
def flatMap[B](f: A => M[B]): M[B] = M.bind(self)(f)
def map[B](f: A => B): M[B] = M.map(self)(f)
}
implicit def ToMonadV[M[_], A](ma: M[A])
(implicit M0: Monad[M]) =
new MonadV[M, A] {
val M = M0
val self = ma
}
// Or, as of Scala 2.10
implicit class MonadOps[M[_], A](self: M[A])(implicit M: Monad[M]) {
def flatMap[B](f: A => M[B]): M[B] = M.flatMap(self)(f)
def map[B](f: A => B): M[B] = M.map(self)(f)
}
def liftM2[M[_]: Monad, A, B, C](f: (A, B) => C): (M[A], M[B]) => M[C] =
(ma, mb) => for {a <- ma; b <- mb} yield f(a, b)
Update
Yep, its possible to write less generic version of liftM2 for the Scala collections. You just have to feed in all the required CanBuildFrom instances.
scala> def liftM2[CC[X] <: TraversableLike[X, CC[X]], A, B, C]
| (f: (A, B) => C)
| (implicit ba: CanBuildFrom[CC[A], C, CC[C]], bb: CanBuildFrom[CC[B], C, CC[C]])
| : (CC[A], CC[B]) => CC[C] =
| (ca, cb) => ca.flatMap(a => cb.map(b => f(a, b)))
liftM2: [CC[X] <: scala.collection.TraversableLike[X,CC[X]], A, B, C](f: (A, B) => C)(implicit ba: scala.collection.generic.CanBuildFrom[CC[A],C,CC[C]], implicit bb: scala.collection.generic.CanBuildFrom[CC[B],C,CC[C]])(CC[A], CC[B]) => CC[C]
scala> liftM2[List, Int, Int, Int](_ + _)
res0: (List[Int], List[Int]) => List[Int] = <function2>
scala> res0(List(1, 2, 3), List(4, 5))
res1: List[Int] = List(5, 6, 6, 7, 7, 8)