Extract Individual Line Segment Coordinates from Boundary Image - MATLAB - matlab

I have a MATLAB script that gives me the boundary lines of an image using bwboundaries().
Now, after plotting that image, I am getting the complete image, formed from various straight line segments.
I would like to get the coordinates or show the individual line segments that form the boundary.
I think the method is called digital straightness of lines, but I want to know how to apply it here in this case.
[B,L,N] = bwboundaries(z,'noholes');
for k=1:length(B),
boundary = B{k};
if(k > N)
figure, plot(boundary(:,2),boundary(:,1),'g','LineWidth',2);
else
figure, plot(boundary(:,2),boundary(:,1),'r','LineWidth',2);
end
end

According to my understanding of your question,my idea is to use bwtraceboundary().
BW = imread('image.png');
imshow(BW,[]);
r = 165; % you can get the r and c for your image using "impixelinfo"
c = 43;
contour = bwtraceboundary(BW,[r c],'W',4,Inf,'counterclockwise');
hold on;
plot(contour(:,2),contour(:,1),'g','LineWidth',2);
x=contour(:,2)'
y=contour(:,2)'
Am I answering your question?

Use regionprops('desired feature') on the labelled image.
To generate a labelled image use
bwlabel(Img) (high memory usage)
or
bw=bwconncomp(Img,conn) (low memory use)
followed by
labelmatrix(bw)
The best way to proceed would probably be to use a Hough Transform to first get an idea of the lines present in the image. You can play around with Hough Transform to extract the end points of the lines.

Related

Detect parallel lines using Hough transform in matlab

Suppose there is a binary image of a black background and white lines "plotted" on it, i.e., they aren't burnt onto the image. For example:
I need to retain only the lines that are parallel to atleast one of the other lines in the picture. If not perfectly parallel, at least close enough to be parallel(perhaps a variable that can control the degree of parallelism would help with that). In other words, if I choose a particular line and it has one or more lines that are parallel to it, I retain it, else I discard it. I need to do that for all lines in the image.
I came across Hough transform but I'm having trouble understanding how to use the bins to check the orientations and determine parallel lines. Or is there a better way to go about this?
Also, since the lines aren't a part of the image and are just plotted on it, I don't have an image to feed into the Hough Transform function. Can I use the output of the plot function as input directly? This is the code I wrote to plot the white lines:
Location1 is a m-by-2 matrix that contains the coordinates to draw the lines.
figure; imshow(blackImage);
hold on ;
for i=1:size(Location1,1)-1
h = plot([Location1(i,1) Location1(i+1,1)], [Location1(i,2) Location1(i+1,2)]) ;
set(h,'linewidth', .1, 'color', 'b') ;
end
Any help would be appreciated.
Given that
for i=1:size(Location1,1)-1
% one line = Location1(i,:) to Location1(i+1,:)
end
then
theta = atan2(diff(Location1(:,2)),diff(Location1(:,1)));
But since lines are parallel even if their theta is in the opposite direction, you want to map all angles to half a circle:
theta = mod(theta,pi/2);
Now theta is in the range [-π/2,π/2].
To find similar angles:
[s,i] = sort(theta);
k = find(diff(s)<0.01); % diff(s) is always positive because s is sorted
i = i([k,k+1]);
theta(i) % <-- sets of similar angles
% Location1(i,:),Location1(i+1,:) <- corresponding lines

Find the intersections of a series of curves of an image: Matlab

I have an image with a series of lines, like below:
I would like to know if there is some method for finding the intersections of all of the lines.
I was checking another post where they offer a way to find the intersections, but once the image is segmented I suppose it has noise or something similar... I will start with a simple image to find each intersection.
My main idea was to solve the "system of equations" but I think for an image with many intersections would be too difficult, I do not know if there is any method to find all intersections.
I assume you don't have the line equations. I used skeletonization and filtering to detect small areas with more than one line crossing them. I'm not sure that it will be so simple for noisy image but it worth trying:
im = im2double(rgb2gray(imread('lines.png')));
% binarize black lines
bw = im == 0;
% skelatonize lines
sk = bwmorph(bw,'skel',inf);
% filter skeleton with 3X3 ones filter
A = imfilter(double(sk),ones(3));
% find blobs greater than 4 - more than one line crossing the filter
B = A > 4;
% get centroids of detected blobs
C = regionprops(B,'Centroid');
Cent = reshape([C.Centroid],2,[]).';
% plot
imshow(im)
hold on;
plot(Cent(:,1),Cent(:,2),'gx','LineWidth',2)

How to select the largest contour in MATLAB

In my progress work, I have to detect a parasite. I have found the parasite using HSV and later made it into a grey image. Now I have done edge detection too. I need some code which tells MATLAB to find the largest contour (parasite) and make the rest of the area as black pixels.
You can select the "largest" contour by filling in the holes that each contour surrounds, figure out which shape gives you the largest area, then use the locations of the largest area and copy that over to a final image. As what Benoit_11 suggested, use regionprops - specifically the Area and PixelList flags. Something like this:
im = imclearborder(im2bw(imread('http://i.stack.imgur.com/a5Yi7.jpg')));
im_fill = imfill(im, 'holes');
s = regionprops(im_fill, 'Area', 'PixelList');
[~,ind] = max([s.Area]);
pix = sub2ind(size(im), s(ind).PixelList(:,2), s(ind).PixelList(:,1));
out = zeros(size(im));
out(pix) = im(pix);
imshow(out);
The first line of code reads in your image from StackOverflow directly. The image is also a RGB image for some reason, and so I convert this into binary through im2bw. There is also a white border that surrounds the image. You most likely had this image open in a figure and saved the image from the figure. I got rid of this by using imclearborder to remove the white border.
Next, we need to fill in the areas that the contour surround, so use imfill with the holes flag. Next, use regionprops to analyze the different filled objects in the image - specifically the Area and which pixels belong to each object in the filled image. Once we obtain these attributes, find the filled contour that gives you the biggest area, then access the correct regionprops element, extract out the pixel locations that belong to the object, then use these and copy over the pixels to an output image and display the results.
We get:
Alternatively, you can use the Perimeter flag (as what Benoit_11) suggested, and simply find the maximum perimeter which will correspond to the largest contour. This should still give you what you want. As such, simply replace the Area flag with Perimeter in the third and fourth lines of code and you should still get the same results.
Since my answer was pretty much all written out I'll give it to you anyway, but the idea is similar to #rayryeng's answer.
Basically I use the Perimeter and PixelIdxList flags during the call to regionprops and therefore get the linear indices of the pixels forming the largest contour, once the image border has been removed using imclearborder.
Here is the code:
clc
clear
BW = imclearborder(im2bw(imread('http://i.stack.imgur.com/a5Yi7.jpg')));
S= regionprops(BW, 'Perimeter','PixelIdxList');
[~,idx] = max([S.Perimeter]);
Indices = S(idx).PixelIdxList;
NewIm = false(size(BW));
NewIm(Indices) = 1;
imshow(NewIm)
And the output:
As you see there are many ways to achieve the same result haha.
This could be one approach -
%// Read in image as binary
im = im2bw(imread('http://i.stack.imgur.com/a5Yi7.jpg'));
im = im(40:320,90:375); %// clear out the whitish border you have
figure, imshow(im), title('Original image')
%// Fill all contours to get us filled blobs and then select the biggest one
outer_blob = imfill(im,'holes');
figure, imshow(outer_blob), title('Filled Blobs')
%// Select the biggest blob that will correspond to the biggest contour
outer_blob = biggest_blob(outer_blob);
%// Get the biggest contour from the biggest filled blob
out = outer_blob & im;
figure, imshow(out), title('Final output: Biggest Contour')
The function biggest_blob that is based on bsxfun is an alternative to what other answers posted here perform with regionprops. From my experience, I have found out this bsxfun based technique to be faster than regionprops. Here are few benchmarks comparing these two techniques for runtime performances on one of my previous answers.
Associated function -
function out = biggest_blob(BW)
%// Find and labels blobs in the binary image BW
[L, num] = bwlabel(BW, 8);
%// Count of pixels in each blob, basically should give area of each blob
counts = sum(bsxfun(#eq,L(:),1:num));
%// Get the label(ind) cooresponding to blob with the maximum area
%// which would be the biggest blob
[~,ind] = max(counts);
%// Get only the logical mask of the biggest blob by comparing all labels
%// to the label(ind) of the biggest blob
out = (L==ind);
return;
Debug images -

Detecting specific lines using hough transform/houghlines in matlab

I am currently doing a matlab project where I must isolate a barcode from a image and read the barcode information.
The method that I am using is the Hough Transform, once the transform has completed I am using houghpeaks and houghlines so that I can determine the distance between each of the lines on the barcode. My image may be horizontal or vertical.
The problem that I am having is with the houghpeak detection and the houghline plotting. When I have a image that has vertical lines it is not detecting every line of the barcode. I have a link below of a barcode image that I am plotting lines onto, I would like for every vertical line over my specified length(65 in the case of this image) to have a line superimposed on it so that I can then take this information and measure the distance between each line
My reason for choosing 65 as my 'MinLength' is because I am getting horizontal lines plotted in other parts of the image if I dont specify this high value.
I have tried to implement sobel edge detection so that I could specify horizontal/vertical direction but get a error using it: ('Reference to non-existent field 'point1').
I am also not too clear on the 'FillGap' parameter, I have read the matlab help on it but I am still not getting my head around it. I have played around with different values to try and gain a understanding of it but I am not too clear.
I have also tried to implement the code using a image that has more than just a barcode.
In this image it is also only picking up what seems to be random houghpeaks and therefore not plotting the hough lines that I would like it to.
So my question is really can anybody tell me why the code is not plotting all of the hough lines on each 'line' of the barcode in the image.
Below is the code.
Thanks in advance!
I = imread('barcode (2).jpg');
I = im2double(I);
I = rgb2gray(I);
BW = edge(I,'canny');
[H,T,R] = hough(BW);
figure(1),imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
P = houghpeaks(H,26,'threshold',ceil(0.5*max(H(:))));
x = T(P(:,2));
y = R(P(:,1));
plot(x,y,'s','color','white');
% Find lines and plot them
lines = houghlines(BW,T,R,P,'FillGap',2,'MinLength',65);
figure, imshow(BW), hold on
max_len = 0;
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
% plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
% determine the endpoints of the longest line segment
len = norm(lines(k).point1 - lines(k).point2);
if ( len > max_len)
max_len = len;
xy_long = xy;
end
end
% highlight the longest line segment
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');
Instead of doing line detection to compute your barcode, why don't you plot a profile through the entire length of the barcode. This way you can detect peaks and troughs to distinguish black and white sections.
You would need way less computing power and your code would be much easier.

Detecting center point of cross using Matlab

Hello, I have an image as shown above. Is it possible for me to detect the center point of the cross and output the result using Matlab? Thanks.
Here you go. I'm assuming that you have the image toolbox because if you don't then you probably shouldn't be trying to do this sort of thing. However, all of these functions can be implemented with convolutions I believe. I did this process on the image you presented above and obtained the point (139,286) where 138 is the row and 268 is the column.
1.Convert the image to a binary image:
bw = bw2im(img, .25);
where img is the original image. Depending on the image you might have to adjust the second parameters (which ranges from 0 to 1) so that you only get the cross. Don't worry about the cross not being fully connected because we'll remedy that in the next step.
2.Dilate the image to join the parts. I had to do this twice because I had to set the threshold so low on the binary image conversion (some parts of your image were pretty dark). Dilation essentially just adds pixels around existing white pixels (I'll also be inverting the binary image as I send it into bwmorph because the operations are made to act on white pixels which are the ones that have a value of 1).
bw2 = bwmorph(~bw, 'dilate', 2);
The last parameter says how many times to do the dilation operation.
3.Shrink the image to a point.
bw3 = bwmorph(bw2, 'shrink',Inf);
Again, the last parameter says how many times to perform the operation. In this case I put in Inf which shrinks until there is only one pixel that is white (in other words a 1).
4.Find the pixel that is still a 1.
[i,j] = find(bw3);
Here, i is the row and j is the column of the pixel in bw3 such that bw3(i,j) is equal to 1. All the other pixels should be 0 in bw3.
There might be other ways to do this with bwmorph, but I think that this way works pretty well. You might have to adjust it depending on the picture too. I can include images of each step if desired.
I just encountered the same kind of problem, and I found other solutions that I would like to share:
Assume image file name is pict1.jpg.
1.Read input image, crop relevant part and covert to Gray-scale:
origI = imread('pict1.jpg'); %Read input image
I = origI(32:304, 83:532, :); %Crop relevant part
I = im2double(rgb2gray(I)); %Covert to Grayscale and to double (set pixel range [0, 1]).
2.Convert image to binary image in robust approach:
%Subtract from each pixel the median of its 21x21 neighbors
%Emphasize pixels that are deviated from surrounding neighbors
medD = abs(I - medfilt2(I, [21, 21], 'symmetric'));
%Set threshold to 5 sigma of medD
thresh = std2(medD(:))*5;
%Convert image to binary image using above threshold
BW = im2bw(medD, thresh);
BW Image:
3.Now I suggest two approaches for finding the center:
Find find centroid (find center of mass of the white cluster)
Find two lines using Hough transform, and find the intersection point
Both solutions return sub-pixel result.
3.1.Find cross center using regionprops (find centroid):
%Find centroid of the cross (centroid of the cluster)
s = regionprops(BW, 'centroid');
centroids = cat(1, s.Centroid);
figure;imshow(BW);
hold on, plot(centroids(:,1), centroids(:,2), 'b*', 'MarkerSize', 15), hold off
%Display cross center in original image
figure;imshow(origI), hold on, plot(82+centroids(:,1), 31+centroids(:,2), 'b*', 'MarkerSize', 15), hold off
Centroid result (BW image):
Centroid result (original image):
3.2 Find cross center by intersection of two lines (using Hough transform):
%Create the Hough transform using the binary image.
[H,T,R] = hough(BW);
%ind peaks in the Hough transform of the image.
P = houghpeaks(H,2,'threshold',ceil(0.3*max(H(:))));
x = T(P(:,2)); y = R(P(:,1));
%Find lines and plot them.
lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
figure, imshow(BW), hold on
L = cell(1, length(lines));
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
% Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
%http://robotics.stanford.edu/~birch/projective/node4.html
%Find lines in homogeneous coordinates (using cross product):
L{k} = cross([xy(1,1); xy(1,2); 1], [xy(2,1); xy(2,2); 1]);
end
%https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
%Lines intersection in homogeneous coordinates (using cross product):
p = cross(L{1}, L{2});
%Convert from homogeneous coordinate to euclidean coordinate (divide by last element).
p = p./p(end);
plot(p(1), p(2), 'x', 'LineWidth', 1, 'Color', 'white', 'MarkerSize', 15)
Hough transform result:
I think that there is a far simpler way of solving this. The lines which form the cross-hair are of equal length. Therefore it in will be symmetric in all orientations. So if we do a simple line scan horizontally as well as vertically, to find the extremities of the lines forming the cross-hair. the median of these values will give the x and y co-ordinates of the center. Simple geometry.
I just love these discussions of how to find something without defining first what that something is! But, if I had to guess, I’d suggest the center of mass of the original gray scale image.
What about this;
a) convert to binary just to make the algorithm faster.
b) Perform a find on the resulting array
c) choose the element which has either lowest/highest row/column index (you would have four points to choose from then
d) now keep searching neighbours
have a global criteria for search that if search does not result in more than a few iterations, the point selected is false and choose another extreme point
e) going along the neighbouring points, you will end up at a point where you have three possible neighbours.That is you intersection
I would start by using the grayscale image map. The darkest points are on the cross, so discriminating on the highest values is a starting point. After discrimination, set all the lower points to white and leave the rest as they are. This would maximize the contrast between points on the cross and points in the image. Next up is to come up with a filter for determining the position with the highest average values. I would step through the entire image with a NxM array and take the mean value at the center point. Create a new array of these means and you should have the highest mean at the intersection. I'm curious to see how someone else may try this!