Call a method from a String in Swift - swift

Calling a method from its name (in a String format) can be sometimes useful.
In Swift it is recomended to change behavior and to use closures to do something "dynamically", so for example you can have a dictionary of functions, with the name as the key, and the implementation as the value.
However, sometimes you want to simply know "how to do it", and this is the reason of this question.
So, how to call dynamically a Swift method starting from it's name as string?
In Objective C it was simple:
[self performSelector:NSSelectorFromString(#"aSelector")];
But performSelector is banned in Swift
Is there any alternative?

In Swift, you should use closures and change your approach.
However, if you want to use performSelector to dynamically call a method given only it's String signature, altough it's not supported natively, I've found how to do it.
It is possible to create a C alternative to performSelector that:
works even on native swift classes (non objective-c)
takes a selector from string
However it's not so straightforward to implement a complete version of it, and it's necessary to create the method in C.
in C we have dlsym(), a function that returns a pointer to a function given the char symbol.
Well, reading this interesting post:
http://www.eswick.com/2014/06/inside-swift/
I've learned a lot of interesting things about swift.
Swift instance methods are plain functions with a specific signature, like this
_TFC14FirstSwiftTest12ASampleClass13aTestFunctionfS0_FT_CSo8NSString
where the "self" value is passed as the last parameter
in short you can call it directly from the c side without any kind of bridging, it is sufficient to rebuild the correct function signature.
In the signature above, there is the name of the project (FirstSwiftTest) and the lenght (14), the name of the class (ASampleClass) and the lenght (12), the name of the function (aTestFunction) and the lenght (13), then other values as the return type ecc ecc. For other details look at the previous link
The function above, is the representation of this:
class ASampleClass
{
func aTestFunction() -> NSString
{
println("called correctly")
return NSString(string: "test")
}
}
Well, on the c side, I was able to create this function
#include <stdio.h>
#include <dlfcn.h>
typedef struct objc_object *id;
id _performMethod(id stringMethod, id onObject)
{
// ...
// here the code (to be created) to translate stringMethod in _TFC14FirstSwiftTest12ASampleClass13aTestFunctionfS0_FT_CSo8NSString
// ...
id (*functionImplementation)(id);
*(void **) (&functionImplementation) = dlsym(RTLD_DEFAULT, "_TFC14FirstSwiftTest12ASampleClass13aTestFunctionfS0_FT_CSo8NSString");
char *error;
if ((error = dlerror()) != NULL) {
printf("Method not found \n");
} else {
return functionImplementation(onObject); // <--- call the function
}
return NULL
}
And then called it on the swift side
let sampleClassInstance = ASampleClass()
println(_performMethod("aTestFunction", sampleClassInstance))
The function resulted in these statement printed on the log:
called correctly
test
So it should be not so difficult to create a _performMethod() alternative in C that:
creates automatically the function signature (since it seems to have a logic :-)
manages different return value types and parameters
EDIT
In Swift 2 (and maybe in Beta3, I didn't try) It seems that performSelector() is permitted (and you can call it only on NSObject subclasses). Examining the binary, It seems that now Swift creates static functions that can be specifically called by performSelector.
I created this class
class TestClass: NSObject {
func test() -> Void {
print("Hello");
}
}
let test = TestClass()
let aSel : Selector = NSSelectorFromString("test")
test.performSelector(aSel)
and now in the binary I find
000000010026d830 t __TToFC7Perform9TestClass4testfT_T_
At this time, I don't understand well the reasons behind this, but I'll investigate further

You could call a method from a String this way:
let foo = <some NSObject subclass instance>
let selectorName = "name"
foo.perform(Selector(selectorName))
It is available only when your foo class is subclass of NSObject

swift3 version
class MyClass:NSObject
{
required public override init() { print("Hi!") }
public func test(){
print("This is Test")
}
public class func static_test(){
print("This is Static Test")
}
}
if let c: NSObject.Type = NSClassFromString("TestPerformSelector.MyClass") as? NSObject.Type{
let c_tmp = c.init()
c_tmp.perform(Selector("test"))
c.perform(Selector("static_test"))
}

Related

Swift Passing a Generic from a Function

I have the following function :
Amplify.API.query(request: .get(
self.getObjectForOCObject(ocObject: ocObject)!, byId: id)) { event in
The definition of the get function is :
public static func get<M: Model>(_ modelType: M.Type,
byId id: String) -> GraphQLRequest<M?> {
My getObjectForObject is as follows :
func getObjectForOCObject <M: Model>(ocObject:NSObject) -> M.Type?
{
if type (of:ocObject) == type(of: OCAccount.self)
{
return Account.self as? M.Type
}
return nil;
}
But I'm getting a"Generic Parameter 'M' could not be inferred. I get that the compiler cannot determine what type of object this is. However I don't know how to fix this. I need my getObjectForOCObject function to return what it is expecting. Essentially I'm trying to return the type of object based on the type of another object.
Normally this call is done this way and it works...
Amplify.API.query(request: .get(Account.self, byId: id)) { event in
I'm trying to avoid having to create a number of functions to handle each different Model in my code as that is being handled in higher up in the call hierarchy. Which is why I'm trying to do this. Otherwise I'm going to have to write essentially the same code in multiple places. In Objective C one can use the super class to pass objects around but the inheriting class still comes along with it. But with Swift being dynamically typed, I'm running into this issue.
The closest I've gotten is this... Changing the getObjectForOCObject return to Model.Type? as so :
func getObjectForOCObject (ocObject:NSObject) -> Model.Type?
{
if type (of:ocObject) == type(of: OCAccount.self)
{
return Account.self
}
return nil;
}
Then I get a Cannot convert value of type 'Model.Type?' to expected argument type 'M.Type' But aren't these essentially the same thing based on the .get function above?
Hoping for some insight here. Also, FYI, I'm pretty terrible with Swift so I'm certain I'm definitely doing some bad things in Swift here. I'm an expert with ObjC. I'm just trying to create a bridge between the two for this Swift library I'm using.

Swift swizzling init function

I'm trying to capture initialisation of InputStream with file URL in Swift. I've successfully implemented such capture in Objective-C for NSInputStream class.
The issue is that after exchanging initialisers, swizzled method is not triggered. Furthermore, after method exchange, calling swizzled method directly does not lead to its execution, meaning, its implementation was successfully exchanged. I'd like to know, what are the reasons of such odd behaviour, as method is swizzled successfully, but it's not clear, which method was replaced by swizzled one. Provided sample with current implementation of InputStream swizzling in Swift.
private let swizzling: (AnyClass, Selector, Selector) -> () = { forClass, originalSelector, swizzledSelector in
if let originalMethod = class_getInstanceMethod(forClass, originalSelector),
let swizzledMethod = class_getInstanceMethod(forClass, swizzledSelector) {
method_exchangeImplementations(originalMethod, swizzledMethod)
}
}
extension InputStream {
#objc dynamic func swizzledInit(url: URL) -> InputStream? {
print("Swizzled constructor")
return self.swizzledInit(url: url)
}
static func Swizzle() {
swizzling(InputStream.self, #selector(InputStream.init(url:)), #selector(swizzledInit(url:)))
}
}
From the InputStream documentation:
NSInputStream is an abstract superclass of a class cluster consisting of concrete subclasses of NSStream that provide standard read-only access to stream data.
The key here: when you create an InputStream, the object you get back will not be of type InputStream, but a (private) subclass of InputStream. Much like the Foundation collection types (NSArray/NSMutableArray, NSDictionary/NSMutableDictionary, etc.), the parent type you interface with is not the effective type you're working on: when you +alloc one of these types, the returned object is usually of a private subclass.
In most cases, this is irrelevant implementation detail, but in your case, because you're trying to swizzle an initializer, you do actually care about the value returned from +alloc, since you're swizzling an initializer which is never getting called.
In the specific case of InputStream, the value returned from +[NSInputStream alloc] is of the private NSCFInputStream class, which is the effective toll-free bridged type shared with CoreFoundation. This is private implementation detail that may change at any time, but you can swizzle the initializer on that class instead:
guard let class = NSClassFromString("NSCFInputStream") else {
// Handle the fact that the class is absent / has changed.
return
}
swizzling(class, #selector(InputStream.init(url:)), #selector(swizzledInit(url:)))
Note that if you're submitting an app for App Store Review, it is possible that the inclusion of a private class name may affect the review process.

In Swift, can you write an extension which returns a typed instance of the class the extension is on?

This is one of those things that seems simple enough, but doesn't work as you'd expect.
I'm working on a 'fluent/chaining'-style API for my classes to allow you to set properties via functions which can be chained together so you don't have to go crazy with initializers. Plus, it makes it more convenient when working with functions like map, filter and reduce which share the same kind of API.
Consider this RowManager extension...
extension RowManager
{
#discardableResult
public func isVisible(_ isVisible:Bool) -> RowManager
{
self.isVisible = isVisible
return self
}
}
This works exactly as one would expect. But there's a problem here... if you're working with a subclass of RowManager, this downcasts the object back to RowManager, losing all of the subclass-specific details.
"No worries!" I thought. "I'll just use Self and self to handle the type!" so I changed it to this...
extension RowManager
{
#discardableResult
public func isVisible(_ isVisible:Bool) -> Self // Note the capitalization representing the type, not instance
{
self.isVisible = isVisible
return self // Note the lowercase representing the instance, not type
}
}
...but that for some reason won't even compile giving the following error...
Command failed due to signal: Segmentation fault: 11
UPDATE
Doing more research, this seems to be because our code both is in, and also uses, dynamic libraries. Other questions here on SO also talk about that specific error in those cases. Perhaps this is a bug with the compiler because as others have correctly pointed out, this code works fine in a stand-alone test but as soon as the change is made in our code, the segmentation fault shows up.
Remembering something similar with class functions that return an instance of that type, I recalled how you had to use a private generic function to do the actual cast, so I tried to match that pattern with the following...
extension RowManager
{
#discardableResult
public func isVisible(_ isVisible:Bool) -> Self // Note the capitalization
{
self.isVisible = isVisible
return getTypedSelf()
}
}
private func getTypedSelf<T:RowManager>() -> T
{
guard let typedSelfInstance = self as? T
else
{
fatalError() // Technically this should never be reachable.
}
return typedSelfInstance
}
Unfortunately, that didn't work either.
For reference, here's the class-based code I attempted to base that off of (className is another extension that simply returns the string-representation of the name of the class you called it on)...
extension UITableViewCell
{
/// Attempts to dequeue a UITableViewCell from a table, implicitly using the class name as the reuse identifier
/// Returns a strongly-typed optional
class func dequeue(from tableView:UITableView) -> Self?
{
return self.dequeue(from:tableView, withReuseIdentifier:className)
}
/// Attempts to dequeue a UITableViewCell from a table based on the specified reuse identifier
/// Returns a strongly-typed optional
class func dequeue(from tableView:UITableView, withReuseIdentifier reuseIdentifier:String) -> Self?
{
return self.dequeue_Worker(tableView:tableView, reuseIdentifier:reuseIdentifier)
}
// Private implementation
private class func dequeue_Worker<T:UITableViewCell>(tableView:UITableView, reuseIdentifier:String) -> T?
{
return tableView.dequeueReusableCell(withIdentifier: reuseIdentifier) as? T
}
}
At WWDC Apple confirmed this was a Swift compiler issue that something else In our codebase was triggering, adding there should never be a case where you get a Seg11 fault in the compiler under any circumstances, so this question is actually invalid. Closing it now, but I will report back if they ever address it.

Swift selectors: how to construct instance referring to method with parameters?

I'm using Swift and Objective C's reflection to try to invoke a method, but the method accepts arguments and I can't work out how to construct an instance of Selector which refers to a method which accepts arguments.
Here is some sample code:
class Thing : NSObject {
func doSomething() {
}
func doSomething(str :String) {
}
}
extension Thing {
func doSomethingElse(str :String) -> String {
}
}
let t = Thing()
var selector = Selector("doSomething")
//selector = Selector("doSomething:")
if t.responds(to: selector) {
t.perform(selector)
}
So I can invoke doSomething with no problem, but I cannot seem to create a Selector from a string which refers to doSomething(str :String). I attempted do to so with the string "doSomething:" (the commented out line).
Just in case it makes any difference, I'm ultimately attempting to invoke the extension method doSomethingElse.
How can I invoke Swift methods with arguments via reflection/selectors?
P.S. I'm aware that in general you're supposed to use #selector nowadays, but this won't work in my case because the method doSomething might not exist in the compiled code.
In Objective C land a Swift method with the signature "doSomething(str :String)" is called "doSomethingElseWithStr:".

Xcode6.3.2 Swift bug with static constants

I am trying to figure out why I am having constant compile problems with this type of construct in Xcode 6.3.2.
class Foo {
static let CONSTANT_NAME = "CONSTANT_STRING"
...
func bar () -> String {
var s = String(format:"%s,%d\n", CONSTANT_NAME, 7)
return s
}
...
}
As I understand the language, this should be perfectly legal code however Xcode is constantly (hah-pun) having issues with it raising the error
"there is no member CONSTANT_NAME in class Foo"
If I get lucky and force it to clean, and then rebuild it will some times sort itself out and work. Other times, even doing that, then trying an open/close project will still not resolve the issue.
So, I guess my implicit follow up question (if the answer to the above is - it is legal code) is: is the Xcode Swift compiler that buggy that even basic things like this are likely to cause problems? If so, swift seems to be in a pretty bad state.
static is class property, that means you have to call it like this ClassName.property
class Foo {
static let CONSTANT_NAME = "CONSTANT_STRING"
func bar () -> String {
var s = String(format:"%s,%d\n", Foo.CONSTANT_NAME, 7)
return s
}
}
That is not a bug. That is what it should be. A class property "belongs" to the class.
If you want your code work without using ClassName, do not use static
class Foo {
let CONSTANT_NAME = "CONSTANT_STRING"
func bar () -> String {
var s = String(format:"%s,%d\n",CONSTANT_NAME, 7)
return s
}
}
More details in the Apple Documentation
The static let syntax is legal and valid. The issue is that you must fully qualify that variable when you access it:
var s = String(format:"%s,%d\n", Foo.CONSTANT_NAME, 7)
The compiler error is a bit obtuse, but it is telling the truth... CONSTANT_NAME is not a member, but a type property of class Foo: Swift Type Properties
I hear you about saving key strokes. I've personally been trying to make my Swift code as idiomatic as possible by milking every short cuts but when you find code like this, you should be glad that the compiler asks you to keep on the safe side:
class Foo {
static let CONSTANT = "hello"
func bar() -> String {
let CONSTANT = "bye"
return CONSTANT // I know which one! Thanks Swift!
}
}
println(Foo.CONSTANT)
println(Foo().bar())