I'm looking for a quick way to combine overlapping blocks into one image. Assume the size of the full image and the coordinates of each block within the full image are known. Also assume the blocks are regularly spaced both horizontally and vertically.
The catch - in the overlapping region, a pixel in the output image should get a value according to a weighted average of the corresponding pixels in the overlapping blocks. The weights should be proportional to the distance from the block center.
So, for example, take a pixel location p (relative to the full image coordinates) in the overlapping region between block B1 and B2. Assume the overlap region is due to a horizontal shift only of size h. If B1(p) and B2(p) are the values at that location as they appear in blocks B1,B2, and d1,d2 are the respective distances of p from the center of blocks B1 and B2 then in the output image O the location p will get O(p) = (h-d1)/h*B1(p) + (h-d2)/h*B2(p).
Note that generally, there can be up to 4 overlapping blocks in any region.
I'm looking for the best way to do this in Matlab. Hopefully, for any choice of distance function.
blockproc and alike can help splitting an image into blocks but allow for very basic combination of results. imfuse comes close to what I need, but offers simple non-weighted alpha blending only. bwdist seems to be useful, but I haven't figured what the most efficient method to put it to use is.
You should use the command im2col.
Once you have all your patches in vectors aligned in one matrix you'll be able to work on the columns (Filtering per patch) and rows (Filtering between patches).
It will be trickier than the classic usage of im2col but it should work.
Related
I have two binary images, each of which have a single white filled parallelogram and a black background. The only difference between the two images is that the parallelograms are in different locations and are slightly different from one another in shape. All the parameters between the two images are the same except for that one change.
I want to check how similar the shape of the two parallelograms are, by using some sort of comparing measure.
I looked into ssimval function in MATLAB but it seems to be taking the whole image into consideration rather than just the white blobs. Is there any other function I can use for this purpose?
For visually checking similarity, you can plot their probability density function and for numeric similarity, compute some similarity measure, such as, KL Divergence, etc.
In a simple way, you can segment your binary image with simple bwlabel function. Then use regionprops function to find perimeter and area of your desire segment. Moreover, center of region is also another comparison point.
You could do it with polygons, by using the polyshape class.
First convert the binary mask to a set of corner points. You can do it with a convex hull, by calling regionprops(bwI, 'ConvexHull').
Then convert the corner points into polygons, by calling polyshape.
Finally measure the dissimiliarities of the polygons by measuring their turning distance. Turning distance is rotation- and scaling invariant, so you might want to add additive terms to your distance metric for those if your problem demands it.
A very simple solution for comparing two binary image is using boolean operations.
Your images contains zero and one values. so If you use boolean operation.
suppose your two images are : B1 , B2
C = B1 & (~B2)
if sum(C(:))==0
% two image are same
else
% two image are different
end
I am trying to erode objects in a binary image such that they do not become smaller than some fixed size. Consider, for instance, a binary map composed of connected components (blobs), wherein one defines blob size by either the minimal or maximal antipolar (anti-perimetric) distance (i.e., the distance between two points that are as far from one another as they can be on the perimeter or contour of the blob; if the contour consists of N consecutively numbered points, then the distances evaluated would be those between points 1 and N/2+1, points 2 and N/2+2, etc.). Given such an arrangement, I seek to erode these blobs until the distance metric reaches a specified limit. If the blobs were simple circles, then the effect could be realized by ultimate erosion followed by dilation to a fixed size; however, the contour of an irregular object would be lost by such a procedure. Is there a way to achieve such an effect for connected, irregular components using built-in functions in MATLAB?
With no image and already tried code presented I can understand you wrong, but may be iterative using bwmorph with 'thin','skel' or 'shrink' will help you.
while(cond < cond_threshold)
bw=bwmorph(bw,...,1); %one of the options above
cond = calc_cond(bw);
end
I have an image like this:
What I want to do is to find the outer edge of this cell and the inner edge in the cell between the two parts of different colors.
But this image contains to much detail I think, and is there any way to simplify this image, remove those small edges and find the edges I want?
I have tried the edge function provided by matlab. But it can only find the outer edge and disturbed by those detailed edges.
This is a very challenging work due to the ambiguous boundaries and tiny difference between red and green intensities. If you want to implement the segmentation very precisely and meet some medical requirements, Shai's k-means plus graph cuts may be one of the very few options (EM algorithm may be an alternative). If you have a large database that has many similar images, some machine learning methods might help. Otherwise, I just wrote a very simple code to roughly extract the internal red region for you. The boundary is not that accurate since some of the green regions are also included.
I1=I;
I=rgb2hsv(I);
I=I(:,:,1); % the channel with relatively large margin between green and red
I=I.*(I<0.25);
I=imdilate(I, true(5));
% I=imfill(I,'holes'); depends on what is your definition of the inner boundary
bw=bwconncomp(I);
ar=bw.PixelIdxList;
% find the largest labeled area,
n=0;
for i=1:length(ar)
if length(ar{i})>n
n=length(ar{i});
num=i;
end
end
bw1=bwlabel(I);
bwfinal(:,:,1)=(bw1==num).*double(I1(:,:,1));
bwfinal(:,:,2)=(bw1==num).*double(I1(:,:,2));
bwfinal(:,:,3)=(bw1==num).*double(I1(:,:,3));
bwfinal=uint8(bwfinal);
imshow(bwfinal)
It seems to me you have three dominant colors in the image:
1. blue-ish background (but also present inside cell as "noise")
2. grenn-ish one part of cell
3. red-ish - second part of cell
If these three colors are distinct enough, you may try and segment the image using k-means and Graph cuts.
First stage - use k-means to associate each pixels with one of three dominant colors. Apply k-means to the colors of the image (each pixel is a 3-vector in your chosen color space). Run k-means with k=3, keep for each pixel its distance to centroids.
Second stage - separate cell from background. Do a binary segmentation using graph-cut. The data cost for each pixel is either the distance to the background color (if pixel is labeled "background"), or the minimal distance to the other two colors (if pixel is labeled "foreground"). Use image contrast to set the pair-wise weights for the smoothness term.
Third stage - separate the two parts of the cell. Again do a binary segmentation using graph-cut but this time work only on pixels marked as "cell" in the previous stage. The data term for pixels that the k-means assigned to background but are labeled as cell should be zero for all labels (these are the "noise" pixels inside the cell).
You may find my matlab wrapper for graph-cuts useful for this task.
I have two images – mannequin with and without garment.
Please refer sample images below. Ignore the jewels, footwear on the mannequin, imagine the second mannequin has only dress.
I want to extract only the garment from the two images for further processing.
The complexity is that there is slight displacement in the position of camera when taking the two pictures. Due to this simple subtraction to generate the garment mask will not work.
Can anyone tell me how to handle it?
I think I need to do registration between the two images so that I can extract only the garment from the image?
Any references to blogs, articles and codes is highly appreciated.
--
Thanks
Idea
This is an idea of how you could do it, I haven't tested it but my gut tells me it might work. I'm assuming that there will be slight differences in the pose of the manequin as well as the camera attitude.
Let the original image be A, and the clothed image be B.
Take the difference D = |A - B|, apply a median filter that is proportional to the largest deviation you expect from pose and camera attitude error: Dmedian = Median(D, kernelsize).
Quantize Dmedian into a binary mask Dmask = Q(Dmedian, threshold) using appropriate threshold values to obtain an approximate mask for the garment (this will be smaller than the garment itself due to the median filter). Reject any shapes in Dmedian that have too small area by setting their pixels to 0.
Expand the shape(s) in Dmask proportionally to the size of the median kernel into Emask=expand(Dmask, k*kernelsize). Then construct the difference in the masks Fmask=|Dmask - Emask| which now contains areas of pixels where the garment edge is expected to be. For every pixel in Fmask which is in this area, find the correlation Cxy between A and B using a small neighbourhood, store the correlations into an image C=1.0 - Corr(A,B, Fmask, n).
Your final garment mask will be M=C+Dmask.
Explanation
Since your image has nice and continuous swatches of colour, the difference between the two similar images will be thin lines and small gradients where the pose and camera attitude is different. When taking a median filter of the difference image over a sufficiently large kernel, these lines will be removed because they are in a minority of the pixels.
The garment on the other hand will (hopefully) have a significant difference from the colors in the unclothed version. And will generate a bigger difference. Thresholding the difference after the median filter should give you a rough mask of the garment that is undersized dues to some of the pixels on the edge being rejected due to their median values being too low. You could stop here if the approximation is good enough for you.
By expanding the mask we obtained above we get a probable region for the "true" edge. The above process has served to narrow our search region for the true edge considerably and we can apply a more costly correlation search between the images along this edge to find where the garment is. High correlation means no carment and low correlation means garment.
We use the inverted correlation as an alpha value together with the initially smaller mask to obtain a alpha valued mask of the garment that can be used for extracting it.
Clarification
Expand: What I mean by "expanding the mask" is to find the contour of the mask region and outsetting/growing/enlarging it to make it larger.
Corr(A,B,Fmask,n): Is just an arbitrarily chosen correlation function that gives correlation between pixels in A and B that are selected by the mask Fmask using a region of size n. The function returns 1.0 for perfect match and 0.0 for anti-match for each pixel tested. A good function is this pseudocode:
foreach px_pos in Fmask where Fmask[px_pos] == 1
Ap = subregion(A, px_pos, size) - mean(mean(A));
Bp = subregion(B, px_pos, size) - mean(mean(B))
Cxy = sum(sum(Ap .* Bp))*sum(sum(Ap .* Bp)) / (sum(sum(Ap.*Ap))*sum(sum(Bp.*Bp)))
C[px_pos] = 1.0 - Cxy;
end
where subregion selects a region of size size around the pixel with position px_pos.
You can see that if Ap == Bp then Cxy=1
i need to find the distance between the two points.I can find the distance between them manually by the pixel to cm converter in the image processing tool box. But i want a code which detects the point positions in the image and calculate the distance.
More accurately speaking the image contains only three points one mid and the other two approximately distanced equally from it...
There might be a better way then this, but I hacked something similar together last night.
Use bwboundaries to find the objects in the image (the contiguous regions in a black/white image).
The second returned matrix, L, is the same image but with the regions numbered. So for the first point, you want to isolate all the pixels related to it,
L2 = (L==1)
Now find the center of that region (for object 1).
x1 = (1:size(L2,2))*sum(L2,1)'/size(L2,2);
y1 = (1:size(L2,1))*sum(L2,2)/size(L2,1);
Repeat that for all the regions in your image. You should have the center of mass of each point. I think that should do it for you, but I haven't tested it.