Semigroup-like thing where the append operation can fail - scala

Suppose I have some type with an associative binary operation that feels a lot like append except that the operation may fail. For example, here's a wrapper for List[Int] that only allows us to "add" lists with the same length:
case class Foo(xs: List[Int]) {
def append(other: Foo): Option[Foo] =
if (xs.size != other.xs.size) None else Some(
Foo(xs.zip(other.xs).map { case (a, b) => a + b })
)
}
This is a toy example, but one of the things it has in common with my real use case is that we could in principle use the type system to make the operation total—in this case by tracking the length of the lists with something like Shapeless's Sized, so that adding lists of unequal lengths would be a compile-time error instead of a runtime failure. That's not too bad, but in my real use case managing the constraints in the type system would require a lot more work and isn't really practical.
(In my use case I have a sensible identity, unlike in this toy example, but we can ignore that for now.)
Is there some principled way to do this kind of thing? Searching for a -> a -> m a or a -> a -> Maybe a on Hoogle doesn't turn up anything interesting. I know I can write an ad-hoc append method that just returns its result wrapped in whatever type I'm using to model failure, but it'd be nice to have something more general that would give me foldMap1, etc. for free—especially since this isn't the first time I've found myself wanting this kind of thing.

Related

scala programming practice with option

May be my design is flawed (most probably it is) but I have been thinking about the way Option is used in Scala and I am not so very happy about it. Let's say I have 3 methods calling one another like this:
def A(): reads a file and returns something
def B(): returns something
def C(): Side effect (writes into DB)
and C() calls B() and in turn B() calls A()
Now, as A() is dependent on I/O ops, I had to handle the exceptions and return and Option otherwise it won't compile (if A() does not return anything). As B() receives an Option from A() and it has to return something, it is bound to return another Option to C(). So, you can possibly imagine that my code is flooded with match/case Some/case None (don't have the liberty to use getOrElse() always). And, if C() is dependent on some other methods which also return Option, you would be scared to look at the definition of C().
So, am I missing something? Or how flawed is my design? How can I improve it?
Using match/case on type Option is often useful when you want to throw away the Option and produce some value after processing the Some(...) but a different value of the same type if you have a None. (Personally, I usually find fold to be cleaner for such situations.)
If, on the other hand, you're passing the Option along, then there are other ways to go about it.
def a():Option[DataType] = {/*read new data or fail*/}
def b(): Optioon[DataType] = {
... //some setup
a().map{ inData =>
... //inData is real, process it for output
}
}
def c():Unit = {
... //some setup
b().foreach{ outData =>
... //outData is real, write it to DB
}
}
am I missing something?
Option is one design decision, but there can be others. I.e what happens when you want to describe the error returned by the API? Option can only tell you two kinds of state, either I have successfully read a value, or I failed. But sometimes you really want to know why you failed. Or more so, If I return None, is it because the file isn't there or because I failed on an exception (i.e. I don't have permission to read the file?).
Whichever path you choose, you'll usually be dealing with one or more effects. Option is one such effect which representing a partial function, i.e. this operation may not yield a result. While using pattern matching with Option, as other said, is one way of handling it, there are other operations which decrease the verbosity.
For example, if you want to invoke an operation in case the value exists and another in case it isn't and they both have the same return type, you can use Option.fold:
scala> val maybeValue = Some(1)
maybeValue: Some[Int] = Some(1)
scala> maybeValue.fold(0)(x => x + 1)
res0: Int = 2
Generally, there are many such combinators defined on Option and other effects, and they might seem cumbersome at the beginning, later they come to grow on you and you see their real power when you want to compose operations one after the other.

Scala: how to work with collections of types?

I am writing by hand a recursive-descent parser for a small language. In my lexer I have:
trait Token{def position:Int}
trait Keyword extends Token
trait Operator extends Token
case class Identifier(position:Int, txt:String) extends Token
case class If (position:Int) extends Keyword
case class Plus (position:Int) extends Operator
/* etcetera; one case class per token type */
My parser works well, and now I would like to incorporate some error recovery: replacing, inserting or discarding tokens until some synchronization point.
For that, it would be handy to have a function that, in invalid Scala, would look something like this
def scanFor(tokenSet:Set[TokenClass], lookahead:Int) = {
lexer.upcomingTokens.take(lookahead).find{ token =>
tokenSet.exists(tokenClass => token.isInstanceOf[tokenClass])
}
}
which I would call, for example: scanFor(Set(Plus, Minus, Times, DividedBy), 4)
However TokenClass, of course, is not a valid type, and I don't know how to create the previous set.
As alternatives:
I could just create a new trait and make all the token classes in the token set I want to check against extend that trait, and then just do an instanceOf check against that trait. However, I may have several of those sets, which could make them hard to name, and the code hard to maintain later on.
I could create isXXX:Token=>Boolean functions, and make sets of those, but it seems unelegant
Any suggestions?
I actually recommend, if there are only a handful of such combinations, using an additional trait. It's easy to write and understand, and it will be fast at runtime. It's not really so bad to say
case class Plus(position: Int)
extends Operator with Arithmetic with Precedence7 with Unary
But there are a wide range of alternatives.
If you don't mind a finicky manual maintenance process and need something really fast, defining an ID number (which you must manually keep distinct) for each token type will allow you to use Set[Int] or BitSet or even just a Long to select those classes you like. You can then do set operations (union, intersection) to build up these selectors from each other. It's not hard to write unit tests to help make the finicky bit a little more reliable. If you can at least manage to list all your types:
val everyone = Seq(Plus, Times, If /* etc */)
assert(everyone.length == everyone.map(_.id).toSet.size)
So you shouldn't be too alarmed by this approach if you decide the performance and composability are essential.
You can also write custom extractors that can (more slowly) pull out the right subset of tokens by pattern matching. For example,
object ArithOp {
def unapply(t: Token): Option[Operator] = t match {
case o: Operator => o match {
case _: Plus | _: Minus | _: Times | _: DividedBy => Some(o)
case _ => None
}
case _ => None
}
}
will give you None if it's not the right type of operation. (In this case, I'm assuming there's no parent other than Operator.)
Finally, you could probably express your types as unions and HLists and pick them out that way using Shapeless, but I don't have experience personally doing that with a parser, so I'm not sure of what difficulties you might encounter.

Why do we need flatMap (in general)?

I have been looking into FP languages (off and on) for some time and have played with Scala, Haskell, F#, and some others. I like what I see and understand some of the fundamental concepts of FP (with absolutely no background in Category Theory - so don't talk Math, please).
So, given a type M[A] we have map which takes a function A=>B and returns a M[B]. But we also have flatMap which takes a function A=>M[B] and returns a M[B]. We also have flatten which takes a M[M[A]] and returns a M[A].
In addition, many of the sources I have read describe flatMap as map followed by flatten.
So, given that flatMap seems to be equivalent to flatten compose map, what is its purpose? Please don't say it is to support 'for comprehensions' as this question really isn't Scala-specific. And I am less concerned with the syntactic sugar than I am in the concept behind it. The same question arises with Haskell's bind operator (>>=). I believe they both are related to some Category Theory concept but I don't speak that language.
I have watched Brian Beckman's great video Don't Fear the Monad more than once and I think I see that flatMap is the monadic composition operator but I have never really seen it used the way he describes this operator. Does it perform this function? If so, how do I map that concept to flatMap?
BTW, I had a long writeup on this question with lots of listings showing experiments I ran trying to get to the bottom of the meaning of flatMap and then ran into this question which answered some of my questions. Sometimes I hate Scala implicits. They can really muddy the waters. :)
FlatMap, known as "bind" in some other languages, is as you said yourself for function composition.
Imagine for a moment that you have some functions like these:
def foo(x: Int): Option[Int] = Some(x + 2)
def bar(x: Int): Option[Int] = Some(x * 3)
The functions work great, calling foo(3) returns Some(5), and calling bar(3) returns Some(9), and we're all happy.
But now you've run into the situation that requires you to do the operation more than once.
foo(3).map(x => foo(x)) // or just foo(3).map(foo) for short
Job done, right?
Except not really. The output of the expression above is Some(Some(7)), not Some(7), and if you now want to chain another map on the end you can't because foo and bar take an Int, and not an Option[Int].
Enter flatMap
foo(3).flatMap(foo)
Will return Some(7), and
foo(3).flatMap(foo).flatMap(bar)
Returns Some(15).
This is great! Using flatMap lets you chain functions of the shape A => M[B] to oblivion (in the previous example A and B are Int, and M is Option).
More technically speaking; flatMap and bind have the signature M[A] => (A => M[B]) => M[B], meaning they take a "wrapped" value, such as Some(3), Right('foo), or List(1,2,3) and shove it through a function that would normally take an unwrapped value, such as the aforementioned foo and bar. It does this by first "unwrapping" the value, and then passing it through the function.
I've seen the box analogy being used for this, so observe my expertly drawn MSPaint illustration:
This unwrapping and re-wrapping behavior means that if I were to introduce a third function that doesn't return an Option[Int] and tried to flatMap it to the sequence, it wouldn't work because flatMap expects you to return a monad (in this case an Option)
def baz(x: Int): String = x + " is a number"
foo(3).flatMap(foo).flatMap(bar).flatMap(baz) // <<< ERROR
To get around this, if your function doesn't return a monad, you'd just have to use the regular map function
foo(3).flatMap(foo).flatMap(bar).map(baz)
Which would then return Some("15 is a number")
It's the same reason you provide more than one way to do anything: it's a common enough operation that you may want to wrap it.
You could ask the opposite question: why have map and flatten when you already have flatMap and a way to store a single element inside your collection? That is,
x map f
x filter p
can be replaced by
x flatMap ( xi => x.take(0) :+ f(xi) )
x flatMap ( xi => if (p(xi)) x.take(0) :+ xi else x.take(0) )
so why bother with map and filter?
In fact, there are various minimal sets of operations you need to reconstruct many of the others (flatMap is a good choice because of its flexibility).
Pragmatically, it's better to have the tool you need. Same reason why there are non-adjustable wrenches.
The simplest reason is to compose an output set where each entry in the input set may produce more than one (or zero!) outputs.
For example, consider a program which outputs addresses for people to generate mailers. Most people have one address. Some have two or more. Some people, unfortunately, have none. Flatmap is a generalized algorithm to take a list of these people and return all of the addresses, regardless of how many come from each person.
The zero output case is particularly useful for monads, which often (always?) return exactly zero or one results (think Maybe- returns zero results if the computation fails, or one if it succeeds). In that case you want to perform an operation on "all of the results", which it just so happens may be one or many.
The "flatMap", or "bind", method, provides an invaluable way to chain together methods that provide their output wrapped in a Monadic construct (like List, Option, or Future). For example, suppose you have two methods that produce a Future of a result (eg. they make long-running calls to databases or web service calls or the like, and should be used asynchronously):
def fn1(input1: A): Future[B] // (for some types A and B)
def fn2(input2: B): Future[C] // (for some types B and C)
How to combine these? With flatMap, we can do this as simply as:
def fn3(input3: A): Future[C] = fn1(a).flatMap(b => fn2(b))
In this sense, we have "composed" a function fn3 out of fn1 and fn2 using flatMap, which has the same general structure (and so can be composed in turn with further similar functions).
The map method would give us a not-so-convenient - and not readily chainable - Future[Future[C]]. Certainly we can then use flatten to reduce this, but the flatMap method does it in one call, and can be chained as far as we wish.
This is so useful a way of working, in fact, that Scala provides the for-comprehension as essentially a short-cut for this (Haskell, too, provides a short-hand way of writing a chain of bind operations - I'm not a Haskell expert, though, and don't recall the details) - hence the talk you will have come across about for-comprehensions being "de-sugared" into a chain of flatMap calls (along with possible filter calls and a final map call for the yield).
Well, one could argue, you don't need .flatten either. Why not just do something like
#tailrec
def flatten[T](in: Seq[Seq[T], out: Seq[T] = Nil): Seq[T] = in match {
case Nil => out
case head ::tail => flatten(tail, out ++ head)
}
Same can be said about map:
#tailrec
def map[A,B](in: Seq[A], out: Seq[B] = Nil)(f: A => B): Seq[B] = in match {
case Nil => out
case head :: tail => map(tail, out :+ f(head))(f)
}
So, why are .flatten and .map provided by the library? Same reason .flatMap is: convenience.
There is also .collect, which is really just
list.filter(f.isDefinedAt _).map(f)
.reduce is actually nothing more then list.foldLeft(list.head)(f),
.headOption is
list match {
case Nil => None
case head :: _ => Some(head)
}
Etc ...

What is the difference between Try and Either?

According to the documentation:
The Try type represents a computation that may either result in an
exception, or return a successfully computed value. It's similar to,
but semantically different from the scala.util.Either type.
The docs do not go into further detail as to what the semantic difference is. Both seem to be able to communicate successes and failures. Why would you use one over the other?
I covered the relationship between Try, Either, and Option in this answer. The highlights from there regarding the relationship between Try and Either are summarized below:
Try[A] is isomorphic to Either[Throwable, A]. In other words you can treat a Try as an Either with a left type of Throwable, and you can treat any Either that has a left type of Throwable as a Try. It is conventional to use Left for failures and Right for successes.
Of course, you can also use Either more broadly, not only in situations with missing or exceptional values. There are other situations where Either can help express the semantics of a simple union type (where value is one of two types).
Semantically, you might use Try to indicate that the operation might fail. You might similarly use Either in such a situation, especially if your "error" type is something other than Throwable (e.g. Either[ErrorType, SuccessType]). And then you might also use Either when you are operating over a union type (e.g. Either[PossibleType1, PossibleType2]).
Since Scala 2.12, the standard library does include the conversions from Either to Try or from Try to Either. For earlier versions, it is pretty simple to enrich Try, and Either as needed:
object TryEitherConversions {
implicit class EitherToTry[L <: Throwable, R](val e: Either[L, R]) extends AnyVal {
def toTry: Try[R] = e.fold(Failure(_), Success(_))
}
implicit class TryToEither[T](val t: Try[T]) extends AnyVal {
def toEither: Either[Throwable, T] =
t.map(Right(_)).recover(Left(_)).get
}
}
This would allow you to do:
import TryEitherConversions._
//Try to Either
Try(1).toEither //Either[Throwable, Int] = Right(1)
Try("foo".toInt).toEither //Either[Throwable, Int] = Left(java.lang.NumberFormatException)
//Either to Try
Right[Throwable, Int](1).toTry //Success(1)
Left[Throwable, Int](new Exception).toTry //Failure(java.lang.Exception)
To narrowly answer your question: "What's the semantic difference":
This probably refers to flatMap and map, which are non-existent in Either and either propagate failure or map the success value in Try. This allows, for instance, chaining like
for {
a <- Try {something}
b <- Try {somethingElse(a)}
c <- Try {theOtherThing(b)}
} yield c
which does just what you'd hope - returns a Try containing either the first exception, or the result.
Try has lots of other useful methods, and of course its companion apply method, that make it very convenient for its intended use - exception handling.
If you really want to be overwhelmed, there are two other classes out there which may be of interest for this kind of application. Scalaz has a class called "\/" (formerly known as Prince), pronounced "Either", which is mostly like Either, but flatMap and map work on the Right value. Similarly, and not, Scalactic has an "Or" which is also similar to Either, but flatMap and map work on the Left value.
I don't recommend Scalaz for beginners.
Either does not imply success and failure, it is just a container for either an A or a B. It is common to use it to represent successes and failures, the convention being to put the failure on the left side, and the success on the right.
A Try can be seen as an Either with the left-side type set to Throwable. Try[A] would be equivalent to Either[Throwable, A].
Use Try to clearly identify a potential failure in the computation, the failure being represented by an exception. If you want to represent the failure with a different type (like a String, or a set of case classes extending a sealed trait for example) use Either.
Either is more general, since it simply represents disjoint unions of types.
In particular, it can represent a union of valid return values of some type X and Exception. However, it does not attempt to catch any exceptions on its own. You have to add try-catch blocks around dangerous code, and then make sure that each branch returns an appropriate subclass of Either (usually: Left for errors, Right for successful computations).
Try[X] can be thought of as Either[Exception, X], but it also catches Exceptions on its own.
Either[X, Y] usage is more general. As its name say it can represent either an object of X type or of Y.
Try[X] has only one type and it might be either a Success[X] or a Failure (which contains a Throwable).
At some point you might see Try[X] as an Either[Throwable,X]
What is nice about Try[X] is that you can chain futher operations to it, if it is really a Success they will execute, if it was a Failure they won't
val connection = Try(factory.open())
val data = connection.flatMap(conn => Try(conn.readData()))
//At some point you can do
data matches {
Success(data) => print data
Failure(throwable) => log error
}
Of course, you can always oneline this like
Try(factory.open()).flatMap(conn => Try(conn.readData()) matches {
Success(data) => print data
Failure(throwable) => log error
}
As already have been mentioned, Either is more general, so it might not only wrap error/successful result, but also can be used as an alternative to Option, for branching the code path.
For abstracting the effect of an error, only for this purpose, I identified the following differences:
Either can be used to specify a description of the error, which can be shown to the client. Try - wraps an exception with a stack trace, less descriptive, less client oriented, more for internal usage.
Either allows us to specify error type, with existing monoid for this type. As a result, it allows us to combine errors (usually via applicative effects). Try abstraction with its exception, has no monoid defined. With Try we must spent more effort to extract error and handle it.
Based on it, here is my best practices:
When I want to abstract effect of error, I always use Either as the first choice, with List/Vector/NonEmptyList as error type.
Try is used only, when you invoke code, written in OOP. Good candidates for Try are methods, that might throw an exception, or methods, that sends request to external systems (rest/soap/database requests in case the methods return a raw result, not wrapped into FP abstractions, like Future, for instance.

Why should I avoid using local modifiable variables in Scala?

I'm pretty new to Scala and most of the time before I've used Java. Right now I have warnings all over my code saying that i should "Avoid mutable local variables" and I have a simple question - why?
Suppose I have small problem - determine max int out of four. My first approach was:
def max4(a: Int, b: Int,c: Int, d: Int): Int = {
var subMax1 = a
if (b > a) subMax1 = b
var subMax2 = c
if (d > c) subMax2 = d
if (subMax1 > subMax2) subMax1
else subMax2
}
After taking into account this warning message I found another solution:
def max4(a: Int, b: Int,c: Int, d: Int): Int = {
max(max(a, b), max(c, d))
}
def max(a: Int, b: Int): Int = {
if (a > b) a
else b
}
It looks more pretty, but what is ideology behind this?
Whenever I approach a problem I'm thinking about it like: "Ok, we start from this and then we incrementally change things and get the answer". I understand that the problem is that I try to change some initial state to get an answer and do not understand why changing things at least locally is bad? How to iterate over collection then in functional languages like Scala?
Like an example: Suppose we have a list of ints, how to write a function that returns sublist of ints which are divisible by 6? Can't think of solution without local mutable variable.
In your particular case there is another solution:
def max4(a: Int, b: Int,c: Int, d: Int): Int = {
val submax1 = if (a > b) a else b
val submax2 = if (c > d) c else d
if (submax1 > submax2) submax1 else submax2
}
Isn't it easier to follow? Of course I am a bit biased but I tend to think it is, BUT don't follow that rule blindly. If you see that some code might be written more readably and concisely in mutable style, do it this way -- the great strength of scala is that you don't need to commit to neither immutable nor mutable approaches, you can swing between them (btw same applies to return keyword usage).
Like an example: Suppose we have a list of ints, how to write a
function that returns the sublist of ints which are divisible by 6?
Can't think of solution without local mutable variable.
It is certainly possible to write such function using recursion, but, again, if mutable solution looks and works good, why not?
It's not so related with Scala as with the functional programming methodology in general. The idea is the following: if you have constant variables (final in Java), you can use them without any fear that they are going to change. In the same way, you can parallelize your code without worrying about race conditions or thread-unsafe code.
In your example is not so important, however imagine the following example:
val variable = ...
new Future { function1(variable) }
new Future { function2(variable) }
Using final variables you can be sure that there will not be any problem. Otherwise, you would have to check the main thread and both function1 and function2.
Of course, it's possible to obtain the same result with mutable variables if you do not ever change them. But using inmutable ones you can be sure that this will be the case.
Edit to answer your edit:
Local mutables are not bad, that's the reason you can use them. However, if you try to think approaches without them, you can arrive to solutions as the one you posted, which is cleaner and can be parallelized very easily.
How to iterate over collection then in functional languages like Scala?
You can always iterate over a inmutable collection, while you do not change anything. For example:
val list = Seq(1,2,3)
for (n <- list)
println n
With respect to the second thing that you said: you have to stop thinking in a traditional way. In functional programming the usage of Map, Filter, Reduce, etc. is normal; as well as pattern matching and other concepts that are not typical in OOP. For the example you give:
Like an example: Suppose we have a list of ints, how to write a function that returns sublist of ints which are divisible by 6?
val list = Seq(1,6,10,12,18,20)
val result = list.filter(_ % 6 == 0)
Firstly you could rewrite your example like this:
def max(first: Int, others: Int*): Int = {
val curMax = Math.max(first, others(0))
if (others.size == 1) curMax else max(curMax, others.tail : _*)
}
This uses varargs and tail recursion to find the largest number. Of course there are many other ways of doing the same thing.
To answer your queston - It's a good question and one that I thought about myself when I first started to use scala. Personally I think the whole immutable/functional programming approach is somewhat over hyped. But for what it's worth here are the main arguments in favour of it:
Immutable code is easier to read (subjective)
Immutable code is more robust - it's certainly true that changing mutable state can lead to bugs. Take this for example:
for (int i=0; i<100; i++) {
for (int j=0; j<100; i++) {
System.out.println("i is " + i = " and j is " + j);
}
}
This is an over simplified example but it's still easy to miss the bug and the compiler won't help you
Mutable code is generally not thread safe. Even trivial and seemingly atomic operations are not safe. Take for example i++ this looks like an atomic operation but it's actually equivalent to:
int i = 0;
int tempI = i + 0;
i = tempI;
Immutable data structures won't allow you to do something like this so you would need to explicitly think about how to handle it. Of course as you point out local variables are generally threadsafe, but there is no guarantee. It's possible to pass a ListBuffer instance variable as a parameter to a method for example
However there are downsides to immutable and functional programming styles:
Performance. It is generally slower in both compilation and runtime. The compiler must enforce the immutability and the JVM must allocate more objects than would be required with mutable data structures. This is especially true of collections.
Most scala examples show something like val numbers = List(1,2,3) but in the real world hard coded values are rare. We generally build collections dynamically (from a database query etc). Whilst scala can reassign the values in a colection it must still create a new collection object every time you modify it. If you want to add 1000 elements to a scala List (immutable) the JVM will need to allocate (and then GC) 1000 objects
Hard to maintain. Functional code can be very hard to read, it's not uncommon to see code like this:
val data = numbers.foreach(_.map(a => doStuff(a).flatMap(somethingElse)).foldleft("", (a : Int,b: Int) => a + b))
I don't know about you but I find this sort of code really hard to follow!
Hard to debug. Functional code can also be hard to debug. Try putting a breakpoint halfway into my (terrible) example above
My advice would be to use a functional/immutable style where it genuinely makes sense and you and your colleagues feel comfortable doing it. Don't use immutable structures because they're cool or it's "clever". Complex and challenging solutions will get you bonus points at Uni but in the commercial world we want simple solutions to complex problems! :)
Your two main questions:
Why warn against local state changes?
How can you iterate over collections without mutable state?
I'll answer both.
Warnings
The compiler warns against the use of mutable local variables because they are often a cause of error. That doesn't mean this is always the case. However, your sample code is pretty much a classic example of where mutable local state is used entirely unnecessarily, in a way that not only makes it more error prone and less clear but also less efficient.
Your first code example is more inefficient than your second, functional solution. Why potentially make two assignments to submax1 when you only ever need to assign one? You ask which of the two inputs is larger anyway, so why not ask that first and then make one assignment? Why was your first approach to temporarily store partial state only halfway through the process of asking such a simple question?
Your first code example is also inefficient because of unnecessary code duplication. You're repeatedly asking "which is the biggest of two values?" Why write out the code for that 3 times independently? Needlessly repeating code is a known bad habit in OOP every bit as much as FP and for precisely the same reasons. Each time you needlessly repeat code, you open a potential source of error. Adding mutable local state (especially when so unnecessary) only adds to the fragility and to the potential for hard to spot errors, even in short code. You just have to type submax1 instead of submax2 in one place and you may not notice the error for a while.
Your second, FP solution removes the code duplication, dramatically reducing the chance of error, and shows that there was simply no need for mutable local state. It's also, as you yourself say, cleaner and clearer - and better than the alternative solution in om-nom-nom's answer.
(By the way, the idiomatic Scala way to write such a simple function is
def max(a: Int, b: Int) = if (a > b) a else b
which terser style emphasises its simplicity and makes the code less verbose)
Your first solution was inefficient and fragile, but it was your first instinct. The warning caused you to find a better solution. The warning proved its value. Scala was designed to be accessible to Java developers and is taken up by many with a long experience of imperative style and little or no knowledge of FP. Their first instinct is almost always the same as yours. You have demonstrated how that warning can help improve code.
There are cases where using mutable local state can be faster but the advice of Scala experts in general (not just the pure FP true believers) is to prefer immutability and to reach for mutability only where there is a clear case for its use. This is so against the instincts of many developers that the warning is useful even if annoying to experienced Scala devs.
It's funny how often some kind of max function comes up in "new to FP/Scala" questions. The questioner is very often tripping up on errors caused by their use of local state... which link both demonstrates the often obtuse addiction to mutable state among some devs while also leading me on to your other question.
Functional Iteration over Collections
There are three functional ways to iterate over collections in Scala
For Comprehensions
Explicit Recursion
Folds and other Higher Order Functions
For Comprehensions
Your question:
Suppose we have a list of ints, how to write a function that returns sublist of ints which are divisible by 6? Can't think of solution without local mutable variable
Answer: assuming xs is a list (or some other sequence) of integers, then
for (x <- xs; if x % 6 == 0) yield x
will give you a sequence (of the same type as xs) containing only those items which are divisible by 6, if any. No mutable state required. Scala just iterates over the sequence for you and returns anything matching your criteria.
If you haven't yet learned the power of for comprehensions (also known as sequence comprehensions) you really should. Its a very expressive and powerful part of Scala syntax. You can even use them with side effects and mutable state if you want (look at the final example on the tutorial I just linked to). That said, there can be unexpected performance penalties and they are overused by some developers.
Explicit Recursion
In the question I linked to at the end of the first section, I give in my answer a very simple, explicitly recursive solution to returning the largest Int from a list.
def max(xs: List[Int]): Option[Int] = xs match {
case Nil => None
case List(x: Int) => Some(x)
case x :: y :: rest => max( (if (x > y) x else y) :: rest )
}
I'm not going to explain how the pattern matching and explicit recursion work (read my other answer or this one). I'm just showing you the technique. Most Scala collections can be iterated over recursively, without any need for mutable state. If you need to keep track of what you've been up to along the way, you pass along an accumulator. (In my example code, I stick the accumulator at the front of the list to keep the code smaller but look at the other answers to those questions for more conventional use of accumulators).
But here is a (naive) explicitly recursive way of finding those integers divisible by 6
def divisibleByN(n: Int, xs: List[Int]): List[Int] = xs match {
case Nil => Nil
case x :: rest if x % n == 0 => x :: divisibleByN(n, rest)
case _ :: rest => divisibleByN(n, rest)
}
I call it naive because it isn't tail recursive and so could blow your stack. A safer version can be written using an accumulator list and an inner helper function but I leave that exercise to you. The result will be less pretty code than the naive version, no matter how you try, but the effort is educational.
Recursion is a very important technique to learn. That said, once you have learned to do it, the next important thing to learn is that you can usually avoid using it explicitly yourself...
Folds and other Higher Order Functions
Did you notice how similar my two explicit recursion examples are? That's because most recursions over a list have the same basic structure. If you write a lot of such functions, you'll repeat that structure many times. Which makes it boilerplate; a waste of your time and a potential source of error.
Now, there are any number of sophisticated ways to explain folds but one simple concept is that they take the boilerplate out of recursion. They take care of the recursion and the management of accumulator values for you. All they ask is that you provide a seed value for the accumulator and the function to apply at each iteration.
For example, here is one way to use fold to extract the highest Int from the list xs
xs.tail.foldRight(xs.head) {(a, b) => if (a > b) a else b}
I know you aren't familiar with folds, so this may seem gibberish to you but surely you recognise the lambda (anonymous function) I'm passing in on the right. What I'm doing there is taking the first item in the list (xs.head) and using it as the seed value for the accumulator. Then I'm telling the rest of the list (xs.tail) to iterate over itself, comparing each item in turn to the accumulator value.
This kind of thing is a common case, so the Collections api designers have provided a shorthand version:
xs.reduce {(a, b) => if (a > b) a else b}
(If you look at the source code, you'll see they have implemented it using a fold).
Anything you might want to do iteratively to a Scala collection can be done using a fold. Often, the api designers will have provided a simpler higher-order function which is implemented, under the hood, using a fold. Want to find those divisible-by-six Ints again?
xs.foldRight(Nil: List[Int]) {(x, acc) => if (x % 6 == 0) x :: acc else acc}
That starts with an empty list as the accumulator, iterates over every item, only adding those divisible by 6 to the accumulator. Again, a simpler fold-based HoF has been provided for you:
xs filter { _ % 6 == 0 }
Folds and related higher-order functions are harder to understand than for comprehensions or explicit recursion, but very powerful and expressive (to anybody else who understands them). They eliminate boilerplate, removing a potential source of error. Because they are implemented by the core language developers, they can be more efficient (and that implementation can change, as the language progresses, without breaking your code). Experienced Scala developers use them in preference to for comprehensions or explicit recursion.
tl;dr
Learn For comprehensions
Learn explicit recursion
Don't use them if a higher-order function will do the job.
It is always nicer to use immutable variables since they make your code easier to read. Writing a recursive code can help solve your problem.
def max(x: List[Int]): Int = {
if (x.isEmpty == true) {
0
}
else {
Math.max(x.head, max(x.tail))
}
}
val a_list = List(a,b,c,d)
max_value = max(a_list)