Scalatest run code before and after specific test - scala

I want to ask a quick question.
Is there a way to run some code before and after a specific test?
Imagine for a moment that I want some environment-setup code to be executed before and after a specific test, but not in all tests.
I've tried to define a function to do that for me and just call that function ant the beginning and the end of my test. It works fine but if the test fails, the function I call at the end isn't called (since the test failed).
Is there a way to restrict the beforeAndAfter trait to be executed only at specific tests?
Thanks.

You can do this (or a variation of this):
def beforeAfter[T](before: =>Unit, after: =>Unit)(t: =>T) = {
before
try t
finally after
}
Then
beforeAfter(before = action1, after = action2) {
test
}

Related

How to detect if a method is called by unit test?

How do I detect if a method is called by unit test in ScalaTest?
Edit: sorry, I was expressing wrongly the thing I wanted. I have a code block in a method which takes very long to finish (I cannot mock it) and it does not affect any logic. I want to skip that code block in the unit test. So I want to know whether it is called by unit test or normal running. If it is called by unit test, I skip it, otherwise, I let it runs normally.
I have a simple workaround by adding a trait like this:
trait AppConfig {
val isDebug:Boolean
}
use it in the places where I needs to check whether it is in debug mode:
class MyLogicClass {
_: AppConfig =>
def myMethod()={
if(isDebug){...}
}
}
Use a code coverage library such as scoverage for instance. It will generate reports that indicate you which parts of your code are used by unit tests.

Logging the time for each test (and/or testSuite) with scala test

I'm using scala test for my tests, and some time ago the builds started to fail sometimes because some (new, probably) test takes more than the limit allowed by the CI.
At first sight no test should take more than the timeout (10 minutes btw), and by the CI output it not easy to see which test is taking so much time (or how much time every test takes)
I can put simple println-based statements to print the current hour at the beginning/end of each test, but I was wondering if scala test provides some builtin feature for that?
If no, does any other scala test framework/library does?
EDIT: tried to wrap the test
I prefere some native method from the lib itself. I was trying to wrap a specs2 test in a method that would get the description and log the times, but I'm having difficulties in running the test in the moment I want to. I did something Like this:
class SomeSpec {
private def withTimeLog(x: Fragment) = {
println(s"Starting test: ${x.description}(${DateTime.now()})")
//what now?
x.executionResult
println(s"End of test: ${x.description}(${DateTime.now()})")
}
withTimeLog("Feature" should {
"stuff" in {
println(s"test: ${DateTime.now()}")
None.isEmpty must beTrue
}
})
}
and the result:
Starting test: End(2016-07-28T18:11:53.101+01:00)
End of test: End(2016-07-28T18:11:53.191+01:00)
[info] FeatureSpecV2
[info]
test running at 2016-07-28T18:11:54.037+01:00
[info] A test should
[info] + stuff
meaning, test was executed in the end, and not between the 2 print statements. Maybe Fragment.execution result doesn't run the test. Tried with several others. Any idea which method should I be using?
You can display execution times in specs2 by passing the showtimes option on the command line
sbt>testOnly *MySpec -- showtimes
Also if you use future matchers you can adjust a "time factor" with the timeFactor command line option.

Scalatest figuring out if test passed or failed after the fact [duplicate]

In scalatest using FunSpec I have some code that fires in the afterEach. I would like to execute some code to get a screenshot only when the test fails. Just about everything I have looked at tries to solve this by putting asserts in try blocks which seems awful. Is there anything like onTestFailure in TestNG or a context I can get like RSpec to determine if the test failed? Looking at the scala doc I see a implementation that takes a configMap, but that is empty when I run the test. Any help would be appreciated.
pretty sure I figured it out. coming from a TestNG background it seemed weird to have to mess with fixtures to accomplish it. I suspect others with a background like mine may also look in all the wrong places as well, so going to leave this here to help others:
override def withFixture(test: NoArgTest) = { // after
val outcome = super.withFixture(test)
outcome match {
case Failed(ex) =>
// log ex (the exception) and a screenshot
}
outcome
}

py.test mixing fixtures and asyncio coroutines

I am building some tests for python3 code using py.test. The code accesses a Postgresql Database using aiopg (Asyncio based interface to postgres).
My main expectations:
Every test case should have access to a new asyncio event loop.
A test that runs too long will stop with a timeout exception.
Every test case should have access to a database connection.
I don't want to repeat myself when writing the test cases.
Using py.test fixtures I can get pretty close to what I want, but I still have to repeat myself a bit in every asynchronous test case.
This is how my code looks like:
#pytest.fixture(scope='function')
def tloop(request):
# This fixture is responsible for getting a new event loop
# for every test, and close it when the test ends.
...
def run_timeout(cor,loop,timeout=ASYNC_TEST_TIMEOUT):
"""
Run a given coroutine with timeout.
"""
task_with_timeout = asyncio.wait_for(cor,timeout)
try:
loop.run_until_complete(task_with_timeout)
except futures.TimeoutError:
# Timeout:
raise ExceptAsyncTestTimeout()
#pytest.fixture(scope='module')
def clean_test_db(request):
# Empty the test database.
...
#pytest.fixture(scope='function')
def udb(request,clean_test_db,tloop):
# Obtain a connection to the database using aiopg
# (That's why we need tloop here).
...
# An example for a test:
def test_insert_user(tloop,udb):
#asyncio.coroutine
def insert_user():
# Do user insertion here ...
yield from udb.insert_new_user(...
...
run_timeout(insert_user(),tloop)
I can live with the solution that I have so far, but it can get cumbersome to define an inner coroutine and add the run_timeout line for every asynchronous test that I write.
I want my tests to look somewhat like this:
#some_magic_decorator
def test_insert_user(udb):
# Do user insertion here ...
yield from udb.insert_new_user(...
...
I attempted to create such a decorator in some elegant way, but failed. More generally, if my test looks like:
#some_magic_decorator
def my_test(arg1,arg2,...,arg_n):
...
Then the produced function (After the decorator is applied) should be:
def my_test_wrapper(tloop,arg1,arg2,...,arg_n):
run_timeout(my_test(),tloop)
Note that some of my tests use other fixtures (besides udb for example), and those fixtures must show up as arguments to the produced function, or else py.test will not invoke them.
I tried using both wrapt and decorator python modules to create such a magic decorator, however it seems like both of those modules help me create a function with a signature identical to my_test, which is not a good solution in this case.
This can probably solved using eval or a similar hack, but I was wondering if there is something elegant that I'm missing here.
I’m currently trying to solve a similar problem. Here’s what I’ve come up with so far. It seems to work but needs some clean-up:
# tests/test_foo.py
import asyncio
#asyncio.coroutine
def test_coro(loop):
yield from asyncio.sleep(0.1)
assert 0
# tests/conftest.py
import asyncio
#pytest.yield_fixture
def loop():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
yield loop
loop.close()
def pytest_pycollect_makeitem(collector, name, obj):
"""Collect asyncio coroutines as normal functions, not as generators."""
if asyncio.iscoroutinefunction(obj):
return list(collector._genfunctions(name, obj))
def pytest_pyfunc_call(pyfuncitem):
"""If ``pyfuncitem.obj`` is an asyncio coroutinefunction, execute it via
the event loop instead of calling it directly."""
testfunction = pyfuncitem.obj
if not asyncio.iscoroutinefunction(testfunction):
return
# Copied from _pytest/python.py:pytest_pyfunc_call()
funcargs = pyfuncitem.funcargs
testargs = {}
for arg in pyfuncitem._fixtureinfo.argnames:
testargs[arg] = funcargs[arg]
coro = testfunction(**testargs) # Will no execute the test yet!
# Run the coro in the event loop
loop = testargs.get('loop', asyncio.get_event_loop())
loop.run_until_complete(coro)
return True # TODO: What to return here?
So I basically let pytest collect asyncio coroutines like normal functions. I also intercept text exectuion for functions. If the to-be-tested function is a coroutine, I execute it in the event loop. It works with or without a fixture creating a new event loop instance per test.
Edit: According to Ronny Pfannschmidt, something like this will be added to pytest after the 2.7 release. :-)
Every test case should have access to a new asyncio event loop.
The test suite of asyncio uses unittest.TestCase. It uses setUp() method to create a new event loop. addCleanup(loop.close) is close automatically the event loop, even on error.
Sorry, I don't know how to write this with py.test if you don't want to use TestCase. But if I remember correctly, py.test supports unittest.TestCase.
A test that runs too long will stop with a timeout exception.
You can use loop.call_later() with a function which raises a BaseException as a watch dog.

Scala, Specs2, Mockito and null return values

I'm trying to test-drive some Scala code using Specs2 and Mockito. I'm relatively new to all three, and having difficulty with the mocked methods returning null.
In the following (transcribed with some name changes)
"My Component's process(File)" should {
"pass file to Parser" in new modules {
val file = mock[File]
myComponent.process(file)
there was one(mockParser).parse(file)
}
"pass parse result to Translator" in new modules {
val file = mock[File]
val myType1 = mock[MyType1]
mockParser.parse(file) returns (Some(myType1))
myComponent.process(file)
there was one(mockTranslator).translate(myType1)
}
}
The "pass file to Parser" works until I add the translator call in the SUT, and then dies because the mockParser.parse method has returned a null, which the translator code can't take.
Similarly, the "pass parse result to Translator" passes until I try to use the translation result in the SUT.
The real code for both of these methods can never return null, but I don't know how to tell Mockito to make the expectations return usable results.
I can of course work around this by putting null checks in the SUT, but I'd rather not, as I'm making sure to never return nulls and instead using Option, None and Some.
Pointers to a good Scala/Specs2/Mockito tutorial would be wonderful, as would a simple example of how to change a line like
there was one(mockParser).parse(file)
to make it return something that allows continued execution in the SUT when it doesn't deal with nulls.
Flailing about trying to figure this out, I have tried changing that line to
there was one(mockParser).parse(file) returns myResult
with a value for myResult that is of the type I want returned. That gave me a compile error as it expects to find a MatchResult there rather than my return type.
If it matters, I'm using Scala 2.9.0.
If you don't have seen it, you can look the mock expectation page of the specs2 documentation.
In your code, the stub should be mockParser.parse(file) returns myResult
Edited after Don's edit:
There was a misunderstanding. The way you do it in your second example is the good one and you should do exactly the same in the first test:
val file = mock[File]
val myType1 = mock[MyType1]
mockParser.parse(file) returns (Some(myType1))
myComponent.process(file)
there was one(mockParser).parse(file)
The idea of unit testing with mock is always the same: explain how your mocks work (stubbing), execute, verify.
That should answer the question, now a personal advice:
Most of the time, except if you want to verify some algorithmic behavior (stop on first success, process a list in reverse order) you should not test expectation in your unit tests.
In your example, the process method should "translate things", thus your unit tests should focus on it: mock your parsers and translators, stub them and only check the result of the whole process. It's less fine grain but the goal of a unit test is not to check every step of a method. If you want to change the implementation, you should not have to modify a bunch of unit tests that verify each line of the method.
I have managed to solve this, though there may be a better solution, so I'm going to post my own answer, but not accept it immediately.
What I needed to do was supply a sensible default return value for the mock, in the form of an org.mockito.stubbing.Answer<T> with T being the return type.
I was able to do this with the following mock setup:
val defaultParseResult = new Answer[Option[MyType1]] {
def answer(p1: InvocationOnMock): Option[MyType1] = None
}
val mockParser = org.mockito.Mockito.mock(implicitly[ClassManifest[Parser]].erasure,
defaultParseResult).asInstanceOf[Parser]
after a bit of browsing of the source for the org.specs2.mock.Mockito trait and things it calls.
And now, instead of returning null, the parse returns None when not stubbed (including when it's expected as in the first test), which allows the test to pass with this value being used in the code under test.
I will likely make a test support method hiding the mess in the mockParser assignment, and letting me do the same for various return types, as I'm going to need the same capability with several return types just in this set of tests.
I couldn't locate support for a shorter way of doing this in org.specs2.mock.Mockito, but perhaps this will inspire Eric to add such. Nice to have the author in the conversation...
Edit
On further perusal of source, it occurred to me that I should be able to just call the method
def mock[T, A](implicit m: ClassManifest[T], a: org.mockito.stubbing.Answer[A]): T = org.mockito.Mockito.mock(implicitly[ClassManifest[T]].erasure, a).asInstanceOf[T]
defined in org.specs2.mock.MockitoMocker, which was in fact the inspiration for my solution above. But I can't figure out the call. mock is rather overloaded, and all my attempts seem to end up invoking a different version and not liking my parameters.
So it looks like Eric has already included support for this, but I don't understand how to get to it.
Update
I have defined a trait containing the following:
def mock[T, A](implicit m: ClassManifest[T], default: A): T = {
org.mockito.Mockito.mock(
implicitly[ClassManifest[T]].erasure,
new Answer[A] {
def answer(p1: InvocationOnMock): A = default
}).asInstanceOf[T]
}
and now by using that trait I can setup my mock as
implicit val defaultParseResult = None
val mockParser = mock[Parser,Option[MyType1]]
I don't after all need more usages of this in this particular test, as supplying a usable value for this makes all my tests work without null checks in the code under test. But it might be needed in other tests.
I'd still be interested in how to handle this issue without adding this trait.
Without the full it's difficult to say but can you please check that the method you're trying to mock is not a final method? Because in that case Mockito won't be able to mock it and will return null.
Another piece of advice, when something doesn't work, is to rewrite the code with Mockito in a standard JUnit test. Then, if it fails, your question might be best answered by someone on the Mockito mailing list.