Merging function declarations - doxygen

I have following requirement in my project,
qualifier1 foo(int a, int b, int c); -- In header file header_1.h
qualifier2 foo(int a, int b, int c); -- In header file header_2.h
Where, qualifier1 is not equal to qualifier2.
Can I document the function declaration as shown below using Doxygen,
qualifier1 qualifier2 foo(int a, int b, int c);
Thanks.

INPUT_FILTER option with sed utility solved my problem as shown,
INPUT_FILTER = "sed -e 's/_qualifier1_ foo/_qualifier1_ _qualifier2_ foo/"
** Note the \ (escape) character use to avoid unknown character errors.

Related

Extracting between two strings with sed until the first occurrence

Can someone explain why I am getting different outcome while using the same command? I have 2 c++ files:
1st one(ax.h)
int iseven(int a);
int sum(float a, int b);
2nd one(ax.cpp)
//Definicija
int iseven(int a) {
if (a%2==0){
return 1;
else
return 0;}
float sum(float a, int b) {
return a + (float)b;
}
Why is it when I use the command:
sed -n '/iseven/,/}/p' ax.cpp
My output only does what I want and it print the text between iseven and the first occurrence of} ->
int iseven(int a) {
if (a%2==0){
return 1;
else
return 0;}
But when I use the same command(sed -n '/iseven/,/)/p' ax.h) on my 1st file(ax.h), it prints everything out:
int iseven(int a);
int sum(float a, int b);
And what I was expecting was int iseven(int a);
When you use
/start/,/end/ as the address in a sed command, it starts searching for end on the next line after the match of start. So you can't use a pattern range when the end pattern is on the same line as the start pattern.
You could just use /iseven/p to match just those lines in ax.h, unless you need to allow for declarations to be spread over multiple lines. If you need to handle both single-line and multi-line declarations, there might be a way using the hold space, but I'm not an advanced enough sed user to show how to do it.

How to scanning this line with fscanf?

Given file with the only line:
001005023000.0028
How can I scan this file (file.txt) and create structure like this:
a=001 b=005 c=02 d=3000.00 e=28
I want to do it with fscanf, but my problem it's that in this line don't exist spaces, and thus, I don't know what is the format that I need to write in fscanf(..)
I've seen this and still I don't understand how to do it.
Did I understand correctly, you are reading in a fixed-field line?
You could try
unsigned int a, b, c, e;
float d;
fscanf(file, "%3u%3u%2u%7f%2u", &a, &b, &c, &d, &e);
printf("a=%u b=%u c=%u d=%f e=%u", a, b, c, d, e);

How to correctly format function calls in emacs

Does anybody know how to remove unwanted whitespace between function parameters.
for example I have a badly formatted function
foo ( int a , int b );
and I would like to get
foo (int a, int b);
I am looking for somethink similar to clean-ups or colon and brace hanging in CC mode. Ideally the correction is done when typing or pressing tab.
Thanks!
Using query-replace-regexp:
M-C-S 5( +Enter(Enter!
M-C-S 5+,Enter,Enter!
M-C-S 5+)Enter)Enter!

Pass by reference in C99

I just read this:
In C++ (and C99), we can pass by
reference, which offers the same
performance as a pointer-pass.
So I tried this simple code:
#include <stdio.h>
void blabla(int& x){
x = 5;
}
int main(){
int y = 3;
printf("y = %d\n", y);
blabla(y);
printf("y = %d\n", y);
}
The output was:
gcc test.c -o test -std=c99
test.c:3:16: error: expected ';', ',' or ')' before '&' token
test.c: In function 'main':
test.c:10:2: warning: implicit declaration of function 'blabla'
Now I'm confused. Is pass by referenced indeed supported by C99?
That page is wrong. There are no "references" in C (even in C99).
In C, when you want to pass "by reference," you fake reference semantics using a pointer.

Variadic recursive preprocessor macros - is it possible?

I've run into a little theoretical problem. In a piece of code I'm maintaining there's a set of macros like
#define MAX_OF_2(a, b) (a) > (b) ? (a) : (b)
#define MAX_OF_3(a, b, c) MAX_OF_2(MAX_OF_2(a, b), c)
#define MAX_OF_4(a, b, c, d) MAX_OF_2(MAX_OF_3(a, b, c), d)
...etc up to MAX_OF_8
What I'd like to do is replace them with something like this:
/* Base case #1, single input */
#define MAX_OF_N(x) (x)
/* Base case #2, two inputs */
#define MAX_OF_N(x, y) (x) > (y) ? (x) : (y)
/* Recursive definition, arbitrary number of inputs */
#define MAX_OF_N(x, ...) MAX_OF_N(x, MAX_OF_N(__VA_ARGS__))
...which, of course, is not valid preprocessor code.
Ignoring that this particular case should probably be solved using a function rather than a preprocessor macro, is it possible to define a variadic MAX_OF_N() macro?
Just for clarity, the end result should be a single macro that takes an arbitrary number of parameters and evaluates to the largest of them. I've got an odd feeling that this should be possible, but I'm not seeing how.
It's possible to write a macro that evaluates to the number of arguments it's called with. (I couldn't find a link to the place where I first saw it.) So you could write MAX_OF_N() that would work as you'd like, but you'd still need all the numbered macros up until some limit:
#define MAX_OF_1(a) (a)
#define MAX_OF_2(a,b) max(a, b)
#define MAX_OF_3(a,...) MAX_OF_2(a,MAX_OF_2(__VA_ARGS__))
#define MAX_OF_4(a,...) MAX_OF_2(a,MAX_OF_3(__VA_ARGS__))
#define MAX_OF_5(a,...) MAX_OF_2(a,MAX_OF_4(__VA_ARGS__))
...
#define MAX_OF_64(a,...) MAX_OF_2(a,MAX_OF_63(__VA_ARGS__))
// NUM_ARGS(...) evaluates to the literal number of the passed-in arguments.
#define _NUM_ARGS2(X,X64,X63,X62,X61,X60,X59,X58,X57,X56,X55,X54,X53,X52,X51,X50,X49,X48,X47,X46,X45,X44,X43,X42,X41,X40,X39,X38,X37,X36,X35,X34,X33,X32,X31,X30,X29,X28,X27,X26,X25,X24,X23,X22,X21,X20,X19,X18,X17,X16,X15,X14,X13,X12,X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,X1,N,...) N
#define NUM_ARGS(...) _NUM_ARGS2(0, __VA_ARGS__ ,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0)
#define _MAX_OF_N3(N, ...) MAX_OF_ ## N(__VA_ARGS__)
#define _MAX_OF_N2(N, ...) _MAX_OF_N3(N, __VA_ARGS__)
#define MAX_OF_N(...) _MAX_OF_N2(NUM_ARGS(__VA_ARGS__), __VA_ARGS__)
Now MAX_OF_N(a,b,c,d,e) will evaluate to max(a, max(b, max(c, max(d, e)))). (I've tested on gcc 4.2.1.)
Note that it's critical that the base case (MAX_OF_2) doesn't repeat its arguments more than once in the expansion (which is why I put max in this example). Otherwise, you'd be doubling the length of the expansion for every level, so you can imagine what will happen with 64 arguments :)
You might consider this cheating, since it is not recursive and it doesn't do the work in the preprocessor. And it uses a GCC extension. And it only works for one type. It is, however, a variadic MAX_OF_N macro:
#include <iostream>
#include <algorithm>
#define MAX_OF_N(...) ({\
int ra[] = { __VA_ARGS__ }; \
*std::max_element(&ra[0], &ra[sizeof(ra) / sizeof(int)]); \
})
int main() {
int i = 12;
std::cout << MAX_OF_N(1, 3, i, 6);
}
Oh yes, and because of the potential variable expression in the initializer list, I don't think that an equivalent of this (using its own function to avoid std::max_element) would work in C89. But I'm not sure variadic macros are in C89 either.
Here's something that I think gets around the "only one type" restriction. It's getting a bit hairy, though:
#include <iostream>
#include <algorithm>
#define MAX_OF_N(x, ...) ({\
typeof(x) ra[] = { (x), __VA_ARGS__ }; \
*std::max_element(&ra[0], &ra[sizeof(ra)/sizeof(ra[0])]); \
})
int main() {
int i = 12;
std::cout << MAX_OF_N(i + 1, 1, 3, 6, i);
}
No, because the preprocessor only takes one "swipe" at the file. There's no way to get it to recursively define macros.
The only code that I've seen do something like this was not variadic, but used default values the user had to pass:
x = MAX_OF_8 (a, b, -1, -1, -1, -1, -1, -1)
assuming all values were non-negative.
Inline functions should give you the same for C++ at least. As you state, it's probably better left to a function with variable arguments similar to printf().
I think that, even if you could expand macros recursively, there would be one little problem with your approach in terms of efficiency... when the macros are expanded, if the MAX_OF_[N-1] is greater, then you have to evaluate it again from scratch.
Here is a silly and stupid answer that probably no one will like xD
file "source.c"
#include "my_macros.h"
...
file "Makefile"
myprogram: source.c my_macros.h
gcc source.c -o myprogram
my_macros.h: make_macros.py
python make_macros.py > my_macros.h
file "make_macros.py"
def split(l):
n = len(l)
return l[:n/2], l[n/2:]
def gen_param_seq(n):
return [chr(i + ord("A")) for i in range(n)]
def make_max(a, b):
if len(a) == 1:
parta = "("+a[0]+")"
else:
parta = make_max(*split(a))
if len(b) == 1:
partb = "("+b[0]+")"
else:
partb = make_max(*split(b))
return "("+parta +">"+partb+"?"+parta+":"+partb+")"
for i in range(2, 9):
p = gen_param_seq(i)
print "#define MAX_"+str(i)+"("+", ".join(p)+") "+make_max(*split(p))
then you'll have those pretty macros defined:
#define MAX_2(A, B) ((A)>(B)?(A):(B))
#define MAX_3(A, B, C) ((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C)))
#define MAX_4(A, B, C, D) (((A)>(B)?(A):(B))>((C)>(D)?(C):(D))?((A)>(B)?(A):(B)):((C)>(D)?(C):(D)))
#define MAX_5(A, B, C, D, E) (((A)>(B)?(A):(B))>((C)>((D)>(E)?(D):(E))?(C):((D)>(E)?(D):(E)))?((A)>(B)?(A):(B)):((C)>((D)>(E)?(D):(E))?(C):((D)>(E)?(D):(E))))
#define MAX_6(A, B, C, D, E, F) (((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C)))>((D)>((E)>(F)?(E):(F))?(D):((E)>(F)?(E):(F)))?((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C))):((D)>((E)>(F)?(E):(F))?(D):((E)>(F)?(E):(F))))
#define MAX_7(A, B, C, D, E, F, G) (((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C)))>(((D)>(E)?(D):(E))>((F)>(G)?(F):(G))?((D)>(E)?(D):(E)):((F)>(G)?(F):(G)))?((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C))):(((D)>(E)?(D):(E))>((F)>(G)?(F):(G))?((D)>(E)?(D):(E)):((F)>(G)?(F):(G))))
#define MAX_8(A, B, C, D, E, F, G, H) ((((A)>(B)?(A):(B))>((C)>(D)?(C):(D))?((A)>(B)?(A):(B)):((C)>(D)?(C):(D)))>(((E)>(F)?(E):(F))>((G)>(H)?(G):(H))?((E)>(F)?(E):(F)):((G)>(H)?(G):(H)))?(((A)>(B)?(A):(B))>((C)>(D)?(C):(D))?((A)>(B)?(A):(B)):((C)>(D)?(C):(D))):(((E)>(F)?(E):(F))>((G)>(H)?(G):(H))?((E)>(F)?(E):(F)):((G)>(H)?(G):(H))))
and the best thing about it is that... it works ^_^
If you're going down this road in C++, take a look at template metaprogramming. It's not pretty, and it may not solve your exact problem, but it will handle recursion.
First, macros don't expand recusrsively. Although, macros can have reentrance by creating a macro for each recursion level and then deducing the recursion level. However, all this repetition and deducing recursion, is taken care of by the Boost.Preprocessor library. You can therefore use the higher order fold macro to calculate the max:
#define MAX_EACH(s, x, y) BOOST_PP_IF(BOOST_PP_GREATER_EQUAL(x, y), x, y)
#define MAX(...) BOOST_PP_SEQ_FOLD_LEFT(MAX_EACH, 0, BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__))
MAX(3, 6, 8) //Outputs 8
MAX(4, 5, 9, 2) //Outputs 9
Now, this will understand literal numbers between 0-256. It wont work on C++ variables or expression, because the C preprocessor doesn't understand C++. Its just pure text replacement. But C++ provides a feature called a "function" that will work on C++ expressions, and you can use it to calculate the max value.
template<class T>
T max(T x, T y)
{
return x > y ? x : y;
}
template<class X, class... T>
auto max(X x, T ... args) -> decltype(max(x, max(args...)))
{
return max(x, max(args...));
}
Now, the code above does require a C++11 compiler. If you are using C++03, you can create multiple overloads of the function in order to simulate variadic parameters. Furthermore, we can use the preprocessor to generate this repetitive code for us(thats what it is there for). So in C++03, you can write this:
template<class T>
T max(T x, T y)
{
return x > y ? x : y;
}
#define MAX_FUNCTION(z, n, data) \
template<class T> \
T max(T x, BOOST_PP_ENUM_PARAMS(n, T x)) \
{ \
return max(x, max(BOOST_PP_ENUM_PARAMS(n, x)));\
}
BOOST_PP_REPEAT_FROM_TO(2, 64, MAX_FUNCTION, ~)
There's a nice recursion example here
The "hack" is to have a mid-step in the preprocessor to make it think that the define is not replaced by anything else at a given step.