How to "link" two ranges together in swift - swift

I have a function that produces a random number output (see below). I'd like for it to choose that output from either 0-50 or 150-400, but not in between. I couldn't find much about it on my own... so if any of you could post either resources or an answer that would be awesome! Thanks so much in advance!
The three question marks are where I assume some operator would go.
func random() -> UInt32 {
var range = UInt32(0)...UInt32(50) ??? UInt32(150)...UInt32(400)
return range.startIndex + arc4random_uniform(range.endIndex - range.startIndex + 1)
}
I tried using the + operator and the | operator, but no luck.

You cannot pass a union of ranges to arc4random_uniform().
What you can do is to create a random number in a single interval and then "adjust" all numbers which are not in the first range to the second range:
func random() -> UInt32 {
var x = arc4random_uniform(302) // 0 .. 301
if (x > 50) {
// map 51 .. 301 to 150 .. 400:
x += 99
}
return x
}
This can be generalized to multiple ranges (now updated for Swift 3):
func randomNumber(fromRanges ranges: Range<UInt32>...) -> UInt32 {
let totalLength = ranges.reduce(0) { $0 + ($1.upperBound - $1.lowerBound)}
var rnd = arc4random_uniform(totalLength)
for range in ranges {
if rnd < range.upperBound - range.lowerBound {
return rnd + range.lowerBound
}
rnd -= range.upperBound - range.lowerBound
}
fatalError("this should never be reached")
}
let x = randomNumber(fromRanges: 0 ..< 51, 150 ..< 401)

An alternative to ranges is to just use a while loop to make sure you get a value in the range you want.
func randomFunc() -> UInt32 {
var rand: UInt32 = 401
while rand < 0 || rand > 400 || (rand > 50 && rand < 150){
rand = arc4random_uniform(400)
}
return rand;
}

Related

How can I write the code of Bessel function with 10 term in swift?

I hope you guys can check. when I use 5 as x it should be showing me -0.17749282815107623 but it returns -0.2792375. I couldn't where I have been doing the mistake.
var evenNumbers = [Int]()
for i in 2...10 {
if i % 2 == 0 {
evenNumbers.append(i)
}
}
func power(val: Float, power: Int)->Float{
var c:Float = 1
for i in 1...power {
c *= val
}
return c
}
func bessel(x: Float)->Float{
var j0:Float = 0
var counter = 1
var lastDetermVal:Float = 1
for eNumber in evenNumbers {
print(lastDetermVal)
if counter == 1 {
lastDetermVal *= power(val: Float(eNumber), power: 2)
j0 += (power(val: x, power: eNumber))/lastDetermVal
counter = -1
}else if counter == -1{
lastDetermVal *= power(val: Float(eNumber), power: 2)
j0 -= (power(val: x, power: eNumber))/lastDetermVal
counter = 1
}
}
return 1-j0
}
bessel(x: 5)
Function 1:
Your mistake seems to be that you didn't have enough even numbers.
var evenNumbers = [Int]()
for i in 2...10 {
if i % 2 == 0 {
evenNumbers.append(i)
}
}
After the above is run, evenNumbers will be populated with [2,4,6,8,10]. But to evaluate 10 terms, you need even numbers up to 18 or 20, depending on whether you count 1 as a "term". Therefore, you should loop up to 18 or 20:
var evenNumbers = [Int]()
for i in 2...18 { // I think the 1 at the beginning should count as a "term"
if i % 2 == 0 {
evenNumbers.append(i)
}
}
Alternatively, you can create this array like this:
let evenNumbers = (1..<10).map { $0 * 2 }
This means "for each number between 1 (inclusive) and 10 (exclusive), multiply each by 2".
Now your solution will give you an answer of -0.1776034.
Here's my (rather slow) solution:
func productOfFirstNEvenNumbers(_ n: Int) -> Float {
if n == 0 {
return 1
}
let firstNEvenNumbers = (1...n).map { Float($0) * 2.0 }
// ".reduce(1.0, *)" means "multiply everything"
return firstNEvenNumbers.reduce(1.0, *)
}
func nthTerm(_ n: Int, x: Float) -> Float {
let numerator = pow(x, Float(n) * 2)
// yes, this does recalculate the product of even numbers every time...
let product = productOfFirstNEvenNumbers(n)
let denominator = product * product
return numerator / (denominator) * pow(-1, Float(n))
}
func bessel10Terms(x: Float) -> Float {
// for each number n in the range 0..<10, get the nth term, add them together
(0..<10).map { nthTerm($0, x: x) }.reduce(0, +)
}
print(bessel10Terms(x: 5))
You code is a bit unreadable, however, I have written a simple solution so try to compare your intermediate results:
var terms: [Float] = []
let x: Float = 5
for index in 0 ..< 10 {
guard index > 0 else {
terms.append(1)
continue
}
// calculate only the multiplier for the previous term
// - (minus) to change the sign
// x * x to multiply nominator
// (Float(index * 2) * Float(index * 2) to multiply denominator
let termFactor = -(x * x) / (Float(index * 2) * Float(index * 2))
terms.append(terms[index - 1] * termFactor)
}
print(terms)
// sum the terms
let result = terms.reduce(0, +)
print(result)
One of the errors I see is the fact that you are actually calculating only 5 terms, not 10 (you iterate 1 to 10, but only even numbers).

Swift - Using stride with an Int Array

I want to add the numbers together and print every 4 elements, however i cannot wrap my head around using the stride function, if i am using the wrong approach please explain a better method
var numbers = [1,2,3,4,5,6,7,8,9,10,11,12,13]
func addNumbersByStride(){
var output = Stride...
//first output = 1+2+3+4 = 10
//second output = 5+6+7+8 = 26 and so on
print(output)
}
It seems you would like to use stride ...
let arr = [1,2,3,4,5,6,7,8,9,10,11,12,13]
let by = 4
let i = stride(from: arr.startIndex, to: arr.endIndex, by: by)
var j = i.makeIterator()
while let n = j.next() {
let e = min(n.advanced(by: by), arr.endIndex)
let sum = arr[n..<e].reduce(0, +)
print("summ of arr[\(n)..<\(e)]", sum)
}
prints
summ of arr[0..<4] 10
summ of arr[4..<8] 26
summ of arr[8..<12] 42
summ of arr[12..<13] 13
You can first split the array into chunks, and then add the chunks up:
extension Array {
// split array into chunks of n
func chunked(into size: Int) -> [[Element]] {
return stride(from: 0, to: count, by: size).map {
Array(self[$0 ..< Swift.min($0 + size, count)])
}
}
}
// add each chunk up:
let results = numbers.chunked(into: 4).map { $0.reduce(0, +) }
If you would like to discard the last sum if the length of the original array is not divisible by 4, you can add an if statement like this:
let results: [Int]
if numbers.count % 4 != 0 {
results = Array(numbers.chunked(into: 4).map { $0.reduce(0, +) }.dropLast())
} else {
results = numbers.chunked(into: 4).map { $0.reduce(0, +) }
}
This is quite a basic solution and maybe not so elegant. First calculate and print sum of every group of 4 elements
var sum = 0
var count = 0
for n in stride(from: 4, to: numbers.count, by: 4) {
sum = 0
for i in n-4..<n {
sum += numbers[i]
}
count = n
print(sum)
}
Then calculate the sum of the remaining elements
sum = 0
for n in count..<numbers.count {
sum += numbers[n]
}
print(sum)

How to print all the digits in a large number of 10 power 25 in swift?

I have been working on a hacker rank problem where I have to print a number which is a factorial of 25. Here is the code I used.
func extraLongFactorials(n: Int) -> Void {
let factorialNumber = factorial(number: n)
var arrayForStorage: [Int] = []
var loop = factorialNumber
while (loop > 0) {
let digit = loop.truncatingRemainder(dividingBy: 10)
arrayForStorage.append(Int(digit))
loop /= 10
}
arrayForStorage = arrayForStorage.reversed()
var returnString = ""
for element in arrayForStorage {
returnString = "\(returnString)\(element)"
}
print(returnString)
}
func factorial(number: Int) -> Double {
if number == 0 || number == 1 {
return 1
} else if number == 2 {
return 2
} else {
return Double(number) * factorial(number: number - 1)
}
}
But when I try to print the factorial number it just prints 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015511210043330982408266888 when it should print
15511210043330985984000000.
I think for a Double number truncatingRemainder(dividingBy: 10) method is not giving me the exact number of the remainder. Because when I tried to print the truncatingRemainder of 15511210043330985984000000 it is giving me as 8. Here is the code.
let number: Double = 15511210043330985984000000
print(number.truncatingRemainder(dividingBy: 10))
So finally I didn't find any solution for the problem of how to split the large number and add it into an array. Looking forward for the solution.
Type Double stores a number as a mantissa and an exponent. The mantissa represents the significant figures of the number, and the exponent represents the magnitude of the number. A Double can only represent about 16 significant figures, and your number has 26 digits, so you can't accurately store 15511210043330985984000000 in a Double.
let number1: Double = 15511210043330985984000000
let number2: Double = 15511210043330985984012345
if number1 == number2 {
print("they are equal")
}
they are equal
You will need another approach to find large factorials like the one shown in this answer.

for loop over odd numbers in swift

I am trying to solve the task
Using a standard for-in loop add all odd numbers less than or equal to 100 to the oddNumbers array
I tried the following:
var oddNumbers = [Int]()
var numbt = 0
for newNumt in 0..<100 {
var newNumt = numbt + 1; numbt += 2; oddNumbers.append(newNumt)
}
print(oddNumbers)
This results in:
1,3,5,7,9,...199
My question is: Why does it print numbers above 100 although I specify the range between 0 and <100?
You're doing a mistake:
for newNumt in 0..<100 {
var newNumt = numbt + 1; numbt += 2; oddNumbers.append(newNumt)
}
The variable newNumt defined inside the loop does not affect the variable newNumt declared in the for statement. So the for loop prints out the first 100 odd numbers, not the odd numbers between 0 and 100.
If you need to use a for loop:
var odds = [Int]()
for number in 0...100 where number % 2 == 1 {
odds.append(number)
}
Alternatively:
let odds = (0...100).filter { $0 % 2 == 1 }
will filter the odd numbers from an array with items from 0 to 100. For an even better implementation use the stride operator:
let odds = Array(stride(from: 1, to: 100, by: 2))
If you want all the odd numbers between 0 and 100 you can write
let oddNums = (0...100).filter { $0 % 2 == 1 }
or
let oddNums = Array(stride(from: 1, to: 100, by: 2))
Why does it print numbers above 100 although I specify the range between 0 and <100?
Look again at your code:
for newNumt in 0..<100 {
var newNumt = numbt + 1; numbt += 2; oddNumbers.append(newNumt)
}
The newNumt used inside the loop is different from the loop variable; the var newNumt declares a new variable whose scope is the body of the loop, so it gets created and destroyed each time through the loop. Meanwhile, numbt is declared outside the loop, so it keeps being incremented by 2 each time through the loop.
I see that this is an old question, but none of the answers specifically address looping over odd numbers, so I'll add another. The stride() function that Luca Angeletti pointed to is the right way to go, but you can use it directly in a for loop like this:
for oddNumber in stride(from:1, to:100, by:2) {
// your code here
}
stride(from:,to:,by:) creates a list of any strideable type up to but not including the from: parameter, in increments of the by: parameter, so in this case oddNumber starts at 1 and includes 3, 5, 7, 9...99. If you want to include the upper limit, there's a stride(from:,through:,by:) form where the through: parameter is included.
If you want all the odd numbers between 0 and 100 you can write
for i in 1...100 {
if i % 2 == 1 {
continue
}
print(i - 1)
}
For Swift 4.2
extension Collection {
func everyOther(_ body: (Element) -> Void) {
let start = self.startIndex
let end = self.endIndex
var iter = start
while iter != end {
body(self[iter])
let next = index(after: iter)
if next == end { break }
iter = index(after: next)
}
}
}
And then you can use it like this:
class OddsEvent: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
(1...900000).everyOther{ print($0) } //Even
(0...100000).everyOther{ print($0) } //Odds
}
}
This is more efficient than:
let oddNums = (0...100).filter { $0 % 2 == 1 } or
let oddNums = Array(stride(from: 1, to: 100, by: 2))
because supports larger Collections
Source: https://developer.apple.com/videos/play/wwdc2018/229/

Generate random number of certain amount of digits

Hy,
I have a very Basic Question which is :
How can i create a random number with 20 digits no floats no negatives (basically an Int) in Swift ?
Thanks for all answers XD
Step 1
First of all we need an extension of Int to generate a random number in a range.
extension Int {
init(_ range: Range<Int> ) {
let delta = range.startIndex < 0 ? abs(range.startIndex) : 0
let min = UInt32(range.startIndex + delta)
let max = UInt32(range.endIndex + delta)
self.init(Int(min + arc4random_uniform(max - min)) - delta)
}
}
This can be used this way:
Int(0...9) // 4 or 1 or 1...
Int(10...99) // 90 or 33 or 11
Int(100...999) // 200 or 333 or 893
Step 2
Now we need a function that receive the number of digits requested, calculates the range of the random number and finally does invoke the new initializer of Int.
func random(digits:Int) -> Int {
let min = Int(pow(Double(10), Double(digits-1))) - 1
let max = Int(pow(Double(10), Double(digits))) - 1
return Int(min...max)
}
Test
random(1) // 8
random(2) // 12
random(3) // 829
random(4) // 2374
Swift 5: Simple Solution
func random(digits:Int) -> String {
var number = String()
for _ in 1...digits {
number += "\(Int.random(in: 1...9))"
}
return number
}
print(random(digits: 1)) //3
print(random(digits: 2)) //59
print(random(digits: 3)) //926
Note It will return value in String, if you need Int value then you can do like this
let number = Int(random(digits: 1)) ?? 0
Here is some pseudocode that should do what you want.
generateRandomNumber(20)
func generateRandomNumber(int numDigits){
var place = 1
var finalNumber = 0;
for(int i = 0; i < numDigits; i++){
place *= 10
var randomNumber = arc4random_uniform(10)
finalNumber += randomNumber * place
}
return finalNumber
}
Its pretty simple. You generate 20 random numbers, and multiply them by the respective tens, hundredths, thousands... place that they should be on. This way you will guarantee a number of the correct size, but will randomly generate the number that will be used in each place.
Update
As said in the comments you will most likely get an overflow exception with a number this long, so you'll have to be creative in how you'd like to store the number (String, ect...) but I merely wanted to show you a simple way to generate a number with a guaranteed digit length. Also, given the current code there is a small chance your leading number could be 0 so you should protect against that as well.
you can create a string number then convert the number to your required number.
func generateRandomDigits(_ digitNumber: Int) -> String {
var number = ""
for i in 0..<digitNumber {
var randomNumber = arc4random_uniform(10)
while randomNumber == 0 && i == 0 {
randomNumber = arc4random_uniform(10)
}
number += "\(randomNumber)"
}
return number
}
print(Int(generateRandomDigits(3)))
for 20 digit you can use Double instead of Int
Here is 18 decimal digits in a UInt64:
(Swift 3)
let sz: UInt32 = 1000000000
let ms: UInt64 = UInt64(arc4random_uniform(sz))
let ls: UInt64 = UInt64(arc4random_uniform(sz))
let digits: UInt64 = ms * UInt64(sz) + ls
print(String(format:"18 digits: %018llu", digits)) // Print with leading 0s.
16 decimal digits with leading digit 1..9 in a UInt64:
let sz: UInt64 = 100000000
let ld: UInt64 = UInt64(arc4random_uniform(9)+1)
let ms: UInt64 = UInt64(arc4random_uniform(UInt32(sz/10)))
let ls: UInt64 = UInt64(arc4random_uniform(UInt32(sz)))
let digits: UInt64 = ld * (sz*sz/10) + (ms * sz) + ls
print(String(format:"16 digits: %llu", digits))
Swift 3
appzyourlifz's answer updated to Swift 3
Step 1:
extension Int {
init(_ range: Range<Int> ) {
let delta = range.lowerBound < 0 ? abs(range.lowerBound) : 0
let min = UInt32(range.lowerBound + delta)
let max = UInt32(range.upperBound + delta)
self.init(Int(min + arc4random_uniform(max - min)) - delta)
}
}
Step 2:
func randomNumberWith(digits:Int) -> Int {
let min = Int(pow(Double(10), Double(digits-1))) - 1
let max = Int(pow(Double(10), Double(digits))) - 1
return Int(Range(uncheckedBounds: (min, max)))
}
Usage:
randomNumberWith(digits:4) // 2271
randomNumberWith(digits:8) // 65273410
Swift 4 version of Unome's validate response plus :
Guard it against overflow and 0 digit number
Adding support for Linux's device because "arc4random*" functions don't exit
With linux device don't forgot to do
#if os(Linux)
srandom(UInt32(time(nil)))
#endif
only once before calling random.
/// This function generate a random number of type Int with the given digits number
///
/// - Parameter digit: the number of digit
/// - Returns: the ramdom generate number or nil if wrong parameter
func randomNumber(with digit: Int) -> Int? {
guard 0 < digit, digit < 20 else { // 0 digit number don't exist and 20 digit Int are to big
return nil
}
/// The final ramdom generate Int
var finalNumber : Int = 0;
for i in 1...digit {
/// The new generated number which will be add to the final number
var randomOperator : Int = 0
repeat {
#if os(Linux)
randomOperator = Int(random() % 9) * Int(powf(10, Float(i - 1)))
#else
randomOperator = Int(arc4random_uniform(9)) * Int(powf(10, Float(i - 1)))
#endif
} while Double(randomOperator + finalNumber) > Double(Int.max) // Verification to be sure to don't overflow Int max size
finalNumber += randomOperator
}
return finalNumber
}