I'm looking to create a way to dynamically call logic depending on template id within scala. So template id 1 calls logic a, template id 2 call logic b, etc. The logic will be diverse but will have the same inputs/outputs. Also the number of different template ids will get into the thousands and will not be known ahead of time, so a loose coupling feels the way to go.
I've started looking at reflection to do this using scala 2.11.1 and can statically use reflection when I know the logic to be used ahead of time but have not found the correct way to dynamically use reflection, so for example passing in template id 2 will call logic b.
Below is a cut down example showing how the static version works and the skeleton I have so far for the dynamic version.
package thePackage
import scala.reflect.runtime.{universe => ru}
trait theTrait { def theMethod(x: String): Unit }
// the different logic held in different objects
object object1 extends theTrait {
def theMethod(x: String) = { println("a " + x ) }
}
object object2 extends theTrait {
def theMethod(x: String) = { println("b " + x ) }
}
object object3 extends theTrait {
def theMethod(x: String) = { println("c " + x ) }
}
// run static/dynamic reflection methods
object ReflectionTest {
// "static" invocation calling object1.theMethod
def staticInvocation() = {
val m = ru.runtimeMirror(getClass.getClassLoader)
val im = m.reflect(thePackage.object1)
val method = ru.typeOf[thePackage.object1.type]
.decl(ru.TermName("theMethod")).asMethod
val methodRun = im.reflectMethod(method)
methodRun("test")
}
staticInvocation
// "dynamic" invocation using integer to call different methods
def dynamicInvocation( y: Integer) = {
val m = ru.runtimeMirror(getClass.getClassLoader)
val module = m.staticModule("thePackage.object" + y)
val im = m.reflectModule(module)
// stuck... static approach does not work here
}
dynamicInvocation(1)
dynamicInvocation(2)
dynamicInvocation(3)
}
What needs to be added/changed to the dynamicInvocation method to make this work, or should I be using a different approach?
You need to get an instance mirror for your module, on which you can reflect the method.
def dynamicInvocation( y: Integer) = {
val m = ru.runtimeMirror(getClass.getClassLoader)
val module = m.staticModule("thePackage.object" + y)
val im = m.reflectModule(module)
val method = im.symbol.info.decl(ru.TermName("theMethod")).asMethod
val objMirror = m.reflect(im.instance)
objMirror.reflectMethod(method)("test")
}
It seems that TermName method in above solution has been replaced by newTermName and also the info.decl seems to not work. Below line worked for me
val method = im.symbol.typeSignature.member(ru.newTermName("testMethod")).asMethod
Related
I'm looking for a way to convert a Scala singleton object given as a string (for example: package1.Main) to the actual instance of Main, so that I can invoke methods on it.
Example of the problem:
package x {
object Main extends App {
val objectPath: String = io.StdIn.readLine("Give an object: ") // user enters: x.B
// how to convert the objectPath (String) to a variable that references singleton B?
val b1: A = magicallyConvert1(objectPath)
b1.hi()
val b2: B.type = magicallyConvert2(objectPath)
b2.extra()
}
trait A {
def hi() = {}
}
object B extends A {
def extra() = {}
}
}
How can the magicallyConvert1 and magicallyConvert2 functions be implemented?
For a normal class, this can be done using something like:
val b: A = Class.forName("x.B").newInstance().asInstanceOf[A]
But I found a solution for singletons, using Java reflections:
A singleton is accesible in Java under the name:
package.SingletonName$.MODULE$
So you have to append "$.MODULE$", which is a static field.
So we can use standard Java reflections to get it.
So the solution is:
def magicallyConvert1(objectPath: String) = {
val clz = Class.forName(objectPath + "$")
val field = clz.getField("MODULE$")
val b: A = field.get(null).asInstanceOf[A]
b
}
def magicallyConvert2(objectPath: String) = {
val clz = Class.forName(objectPath + "$")
val field = clz.getField("MODULE$")
val b: B.type = field.get(null).asInstanceOf[B.type]
b
}
But it would be interesting to still see a solution with Scala-Reflect en Scala-Meta.
take a look at scalameta http://scalameta.org it does what you want and more
I am broadcasting a value in Spark Streaming application . But I am not sure how to access that variable in a different class than the class where it was broadcasted.
My code looks as follows:
object AppMain{
def main(args: Array[String]){
//...
val broadcastA = sc.broadcast(a)
//..
lines.foreachRDD(rdd => {
val obj = AppObject1
rdd.filter(p => obj.apply(p))
rdd.count
}
}
object AppObject1: Boolean{
def apply(str: String){
AnotherObject.process(str)
}
}
object AnotherObject{
// I want to use broadcast variable in this object
val B = broadcastA.Value // compilation error here
def process(): Boolean{
//need to use B inside this method
}
}
Can anyone suggest how to access broadcast variable in this case?
There is nothing particularly Spark specific here ignoring possible serialization issues. If you want to use some object it has to be available in the current scope and you can achieve this the same way as usual:
you can define your helpers in a scope where broadcast is already defined:
{
...
val x = sc.broadcast(1)
object Foo {
def foo = x.value
}
...
}
you can use it as a constructor argument:
case class Foo(x: org.apache.spark.broadcast.Broadcast[Int]) {
def foo = x.value
}
...
Foo(sc.broadcast(1)).foo
method argument
case class Foo() {
def foo(x: org.apache.spark.broadcast.Broadcast[Int]) = x.value
}
...
Foo().foo(sc.broadcast(1))
or even mixed-in your helpers like this:
trait Foo {
val x: org.apache.spark.broadcast.Broadcast[Int]
def foo = x.value
}
object Main extends Foo {
val sc = new SparkContext("local", "test", new SparkConf())
val x = sc.broadcast(1)
def main(args: Array[String]) {
sc.parallelize(Seq(None)).map(_ => foo).first
sc.stop
}
}
Just a short take on performance considerations that were introduced earlier.
Options proposed by zero233 are indeed very elegant way of doing this kind of things in Scala. At the same time it is important to understand implications of using certain patters in distributed system.
It is not the best idea to use mixin approach / any logic that uses enclosing class state. Whenever you use a state of enclosing class within lambdas Spark will have to serialize outer object. This is not always true but you'd better off writing safer code than one day accidentally blow up the whole cluster.
Being aware of this, I would personally go for explicit argument passing to the methods as this would not result in outer class serialization (method argument approach).
you can use classes and pass the broadcast variable to classes
your psudo code should look like :
object AppMain{
def main(args: Array[String]){
//...
val broadcastA = sc.broadcast(a)
//..
lines.foreach(rdd => {
val obj = new AppObject1(broadcastA)
rdd.filter(p => obj.apply(p))
rdd.count
})
}
}
class AppObject1(bc : Broadcast[String]){
val anotherObject = new AnotherObject(bc)
def apply(str: String): Boolean ={
anotherObject.process(str)
}
}
class AnotherObject(bc : Broadcast[String]){
// I want to use broadcast variable in this object
def process(str : String): Boolean = {
val a = bc.value
true
//need to use B inside this method
}
}
I try to define a parametric type alias :
case class A
case class B
case class C
// We need an Int to load instances of A and B, and a String to load C
object Service {
def loadA(i: Int) : A = ???
def loadB(i: Int) : B = ???
def loadC(s: String) : C = ???
}
trait Location[T] { def get : T}
class IntLocation(val i: Int)
class StringLocation(val s: String)
trait EntityLocation[E] extends Location[_]
// Aim : make the loader typesafe
// Problem : I need something like that : type EntityLocation[Composite] = IntLocation
object Family {
trait EntityLoader[EntityT] extends (EntityLocation[EntityT] => EntityT)
val ALoader = new EntityLoader[A] {def load[A](l: EntityLocation[A]) = Service.loadA(l.get)
}
I am not sure what you are trying to achieve here. Could you please explain how you want to use these types in your code?
Assuming just want to use the types IdLocation and FileLocation in your code, maybe you want to try
trait Location[T] { def get : T }
type IdLocation = Location[Id]
type FileLocation = Location[java.io.File]
Seems rather convoluted, so I'm not sure I follow exactly what your purpose here is. You seem to go into many layers of factories that create factories, that call factory methods, etc.
Seems to me that at the end of the day you need you want to have a val ALoader value that you can use to get instances of A from Location[Int] objects, so I'll go with that assumption:
// Not sure what you want this one, but let's assume that you need a wrapper class per your example.
trait Location[P] { def get: P }
class IntLocation(val i: Int) extends Location[Int]
{
override def get: Int = i
}
// P for parameter, O for output class.
def loader[O, P](creator: P => O)(param: Location[P]) = { creator(param.get) }
object Service
{
// A function somewhere, capable of taking your parameter and creating something else (in your example, an Int to an 'A')
// here Int to String to make something concrete.
// This could be any function, anywhere
def loadA(someParam: Int) = someParam.toString
}
def main(args: Array[String])
{
val myStringLoader: Location[Int] => String = loader(Service.loadA)
// Alternatively, you could have written `val myStringLoader = loader(Service.loadA)(_)`. Either the type or the underscore are needed to tell the compiler that you expect a function, not a value.
// Some definition for you wrapper class
val location3 = new Location[Int]{
override def get: Int = 3
}
// ... or just a plain old instance of it.
val otherLocation = new IntLocation(5)
// This would 'load' the kind of thing you want using the method you specified.
val myString = myStringLoader(location3)
val myOtherString = myStringLoader(otherLocation)
// This prints "3 - 5"
print(myString + " - " + myOtherString)
}
This might seem like a long answer, but in truth the line def loader[O, P](creator: P => O)(param: Location[P]) = { creator(param.get) } is the one that does it all, the rest is to make it as similar to your sample as possible and to provide a working main you can use to start from.
Of course, this would be even simpler if you don't really need the Location wrapper for your integer.
I am new to both ScalaMock and mocking in general. I am trying to test a method which calls a method in another (mocked) class and then calls a method on the returned object.
Detailed information:
So I am using ScalaTest and there are five classes involved in this test...
SubInstruction which I am testing
class SubInstruction(label: String, val result: Int, val op1: Int, val op2: Int) extends Instruction(label, "sub") {
override def execute(m: Machine) {
val value1 = m.regs(op1)
val value2 = m.regs(op2)
m.regs(result) = value1 - value2
}
}
object SubInstruction {
def apply(label: String, result: Int, op1: Int, op2: Int) =
new SubInstruction(label, result, op1, op2)
}
Machine which must be mocked for the test
case class Machine(labels: Labels, prog: Vector[Instruction]) {
private final val NUMBEROFREGISTERS = 32
val regs: Registers = new Registers(NUMBEROFREGISTERS)
override def toString(): String = {
prog.foldLeft("")(_ + _)
}
def execute(start: Int) =
start.until(prog.length).foreach(x => prog(x) execute this)
}
object Machine extends App {
if (args.length == 0) {
println("Machine: args should be sml code file to execute")
} else {
println("SML interpreter - Scala version")
val m = Translator(args(0)).readAndTranslate(new Machine(Labels(), Vector()))
println("Here is the program; it has " + m.prog.size + " instructions.")
println(m)
println("Beginning program execution.")
m.execute(0)
println("Ending program execution.")
println("Values of registers at program termination:")
println(m.regs + ".")
}
}
Registers which is required to construct a Machine object
case class Registers(size: Int) {
val registers: Array[Int] = new Array(size)
override def toString(): String =
registers.mkString(" ")
def update(k: Int, v: Int) = registers(k) = v
def apply(k: Int) = registers(k)
}
MockableMachine which I have created as the original Machine class does not have an empty constructor and therefore (as I understand) can not be mocked
class MockableMachine extends Machine(Labels(), Vector()){
}
and finally my test class SubInstructionTest which compiles but throws the exception below.
class SubInstructionTest extends FlatSpec with MockFactory with Matchers {
val label1 = "f0"
val result1 = 25
val op1_1 = 24
val op2_1 = 20
val sub1 = SubInstruction(label1, result1, op1_1, op2_1)
"A SubInstruction" should "retrieve the operands from the correct registers in the given machine " +
"when execute(m: Machine) is called, and perform the operation saving the " +
"result in the correct register." in {
val mockMachine = mock[MockableMachine]
inSequence {
(mockMachine.regs.apply _).expects(op1_1).returning(50)
(mockMachine.regs.apply _).expects(op2_1).returning(16)
(mockMachine.regs.update _).expects(result1, 34)
}
sub1.execute(mockMachine)
}
}
Throws:
java.lang.NoSuchMethodException: Registers.mock$apply$0()
-
I have been searching for a straightforward way to mock this class for hours, but have found nothing. For the time being I have settled on the workaround detailed below, but I was under the impression that mocking would offer a less convoluted solution to the problem of testing my SubInstruction class.
The workaround:
Delete the MockableMachine class and create a CustomMachine class which extends Machine and replaces the registers value with mockedRegisters provided at construction time.
class CustomMachine (mockedRegister: Registers) extends Machine(Labels(), Vector()) {
override
val regs: Registers = mockedRegister
}
a MockableRegisters class which I have created as the original does not have an empty constructor and therefore (as I understand) can not be mocked
class MockableRegisters extends Registers(32) {
}
and the SubInstructionTest class written in a slightly different way
class SubInstructionTest extends FlatSpec with MockFactory with Matchers {
val label1 = "f0"
val result1 = 25
val op1_1 = 24
val op2_1 = 20
val sub1 = SubInstruction(label1, result1, op1_1, op2_1)
"A SubInstruction" should "retrieve the operands from the correct registers in the given machine " +
"when execute(m: Machine) is called, and perform the operation saving the " +
"result in the correct register." in {
val mockRegisters = mock[MockableRegisters]
val machine = new CustomMachine(mockRegisters)
inSequence {
(mockRegisters.apply _).expects(op1_1).returning(50)
(mockRegisters.apply _).expects(op2_1).returning(16)
(mockRegisters.update _).expects(result1, 34)
}
sub1.execute(machine)
}
}
As indicated, this feels like a workaround to me, is there not a simpler way to do this (perhaps similar to my original attempt)?
I have just included the essential code to ask the question, but you can find the full code on my GitHub account.
I don't think mocking nested objects is supported by Scalamock implicitly. You'll have to mock the object returned by the first call which is what your working example does.
FWIW, Mockito supports this. Search for RETURNS_DEEP_STUBS.
Having a trait
trait Persisted {
def id: Long
}
how do I implement a method that accepts an instance of any case class and returns its copy with the trait mixed in?
The signature of the method looks like:
def toPersisted[T](instance: T, id: Long): T with Persisted
This can be done with macros (that are officially a part of Scala since 2.10.0-M3). Here's a gist example of what you are looking for.
1) My macro generates a local class that inherits from the provided case class and Persisted, much like new T with Persisted would do. Then it caches its argument (to prevent multiple evaluations) and creates an instance of the created class.
2) How did I know what trees to generate? I have a simple app, parse.exe that prints the AST that results from parsing input code. So I just invoked parse class Person$Persisted1(first: String, last: String) extends Person(first, last) with Persisted, noted the output and reproduced it in my macro. parse.exe is a wrapper for scalac -Xprint:parser -Yshow-trees -Ystop-after:parser. There are different ways to explore ASTs, read more in "Metaprogramming in Scala 2.10".
3) Macro expansions can be sanity-checked if you provide -Ymacro-debug-lite as an argument to scalac. In that case all expansions will be printed out, and you'll be able to detect codegen errors faster.
edit. Updated the example for 2.10.0-M7
It is not possible to achieve what you want using vanilla scala. The problem is that the mixins like the following:
scala> class Foo
defined class Foo
scala> trait Bar
defined trait Bar
scala> val fooWithBar = new Foo with Bar
fooWithBar: Foo with Bar = $anon$1#10ef717
create a Foo with Bar mixed in, but it is not done at runtime. The compiler simply generates a new anonymous class:
scala> fooWithBar.getClass
res3: java.lang.Class[_ <: Foo] = class $anon$1
See Dynamic mixin in Scala - is it possible? for more info.
What you are trying to do is known as record concatenation, something that Scala's type system does not support. (Fwiw, there exist type systems - such as this and this - that provide this feature.)
I think type classes might fit your use case, but I cannot tell for sure as the question doesn't provide sufficient information on what problem you are trying to solve.
Update
You can find an up to date working solution, which utilizes a Toolboxes API of Scala 2.10.0-RC1 as part of SORM project.
The following solution is based on the Scala 2.10.0-M3 reflection API and Scala Interpreter. It dynamically creates and caches classes inheriting from the original case classes with the trait mixed in. Thanks to caching at maximum this solution should dynamically create only one class for each original case class and reuse it later.
Since the new reflection API isn't that much disclosed nor is it stable and there are no tutorials on it yet this solution may involve some stupid repitative actions and quirks.
The following code was tested with Scala 2.10.0-M3.
1. Persisted.scala
The trait to be mixed in. Please note that I've changed it a bit due to updates in my program
trait Persisted {
def key: String
}
2. PersistedEnabler.scala
The actual worker object
import tools.nsc.interpreter.IMain
import tools.nsc._
import reflect.mirror._
object PersistedEnabler {
def toPersisted[T <: AnyRef](instance: T, key: String)
(implicit instanceTag: TypeTag[T]): T with Persisted = {
val args = {
val valuesMap = propertyValuesMap(instance)
key ::
methodParams(constructors(instanceTag.tpe).head.typeSignature)
.map(_.name.decoded.trim)
.map(valuesMap(_))
}
persistedClass(instanceTag)
.getConstructors.head
.newInstance(args.asInstanceOf[List[Object]]: _*)
.asInstanceOf[T with Persisted]
}
private val persistedClassCache =
collection.mutable.Map[TypeTag[_], Class[_]]()
private def persistedClass[T](tag: TypeTag[T]): Class[T with Persisted] = {
if (persistedClassCache.contains(tag))
persistedClassCache(tag).asInstanceOf[Class[T with Persisted]]
else {
val name = generateName()
val code = {
val sourceParams =
methodParams(constructors(tag.tpe).head.typeSignature)
val newParamsList = {
def paramDeclaration(s: Symbol): String =
s.name.decoded + ": " + s.typeSignature.toString
"val key: String" :: sourceParams.map(paramDeclaration) mkString ", "
}
val sourceParamsList =
sourceParams.map(_.name.decoded).mkString(", ")
val copyMethodParamsList =
sourceParams.map(s => s.name.decoded + ": " + s.typeSignature.toString + " = " + s.name.decoded).mkString(", ")
val copyInstantiationParamsList =
"key" :: sourceParams.map(_.name.decoded) mkString ", "
"""
class """ + name + """(""" + newParamsList + """)
extends """ + tag.sym.fullName + """(""" + sourceParamsList + """)
with """ + typeTag[Persisted].sym.fullName + """ {
override def copy(""" + copyMethodParamsList + """) =
new """ + name + """(""" + copyInstantiationParamsList + """)
}
"""
}
interpreter.compileString(code)
val c =
interpreter.classLoader.findClass(name)
.asInstanceOf[Class[T with Persisted]]
interpreter.reset()
persistedClassCache(tag) = c
c
}
}
private lazy val interpreter = {
val settings = new Settings()
settings.usejavacp.value = true
new IMain(settings, new NewLinePrintWriter(new ConsoleWriter, true))
}
private var generateNameCounter = 0l
private def generateName() = synchronized {
generateNameCounter += 1
"PersistedAnonymous" + generateNameCounter.toString
}
// REFLECTION HELPERS
private def propertyNames(t: Type) =
t.members.filter(m => !m.isMethod && m.isTerm).map(_.name.decoded.trim)
private def propertyValuesMap[T <: AnyRef](instance: T) = {
val t = typeOfInstance(instance)
propertyNames(t)
.map(n => n -> invoke(instance, t.member(newTermName(n)))())
.toMap
}
private type MethodType = {def params: List[Symbol]; def resultType: Type}
private def methodParams(t: Type): List[Symbol] =
t.asInstanceOf[MethodType].params
private def methodResultType(t: Type): Type =
t.asInstanceOf[MethodType].resultType
private def constructors(t: Type): Iterable[Symbol] =
t.members.filter(_.kind == "constructor")
private def fullyQualifiedName(s: Symbol): String = {
def symbolsTree(s: Symbol): List[Symbol] =
if (s.enclosingTopLevelClass != s)
s :: symbolsTree(s.enclosingTopLevelClass)
else if (s.enclosingPackageClass != s)
s :: symbolsTree(s.enclosingPackageClass)
else
Nil
symbolsTree(s)
.reverseMap(_.name.decoded)
.drop(1)
.mkString(".")
}
}
3. Sandbox.scala
The test app
import PersistedEnabler._
object Sandbox extends App {
case class Artist(name: String, genres: Set[Genre])
case class Genre(name: String)
val artist = Artist("Nirvana", Set(Genre("rock"), Genre("grunge")))
val persisted = toPersisted(artist, "some-key")
assert(persisted.isInstanceOf[Persisted])
assert(persisted.isInstanceOf[Artist])
assert(persisted.key == "some-key")
assert(persisted.name == "Nirvana")
assert(persisted == artist) // an interesting and useful effect
val copy = persisted.copy(name = "Puddle of Mudd")
assert(copy.isInstanceOf[Persisted])
assert(copy.isInstanceOf[Artist])
// the only problem: compiler thinks that `copy` does not implement `Persisted`, so to access `key` we have to specify it manually:
assert(copy.asInstanceOf[Artist with Persisted].key == "some-key")
assert(copy.name == "Puddle of Mudd")
assert(copy != persisted)
}
While it's not possible to compose an object AFTER it's creation, you can have very wide tests to determine if the object is of a specific composition using type aliases and definition structs:
type Persisted = { def id: Long }
class Person {
def id: Long = 5
def name = "dude"
}
def persist(obj: Persisted) = {
obj.id
}
persist(new Person)
Any object with a def id:Long will qualify as Persisted.
Achieving what I THINK you are trying to do is possible with implicit conversions:
object Persistable {
type Compatible = { def id: Long }
implicit def obj2persistable(obj: Compatible) = new Persistable(obj)
}
class Persistable(val obj: Persistable.Compatible) {
def persist() = println("Persisting: " + obj.id)
}
import Persistable.obj2persistable
new Person().persist()