Terminology: What is a "glitch" in Functional Reactive Programming / RX? - system.reactive

What is the definition of a "glitch" in the context of Functional Reactive Programming?
I know that in some FRP frameworks "glitches" can occur while in others not. For example RX is not glitch free while ReactFX is glitch free [1].
Could someone give a very simple example demonstrating how and when glitches can occur when using RX and show on the same example how and why the corresponding ReactFX solution is glitch free.
Thanks for reading.

Definition
My (own) favorite definition:
A glitch is a temporary inconsistency in the observable state.
Definition from Scala.Rx:
In the context of FRP, a glitch is a temporary inconsistency in the dataflow graph. Due to the fact that updates do not happen instantaneously, but instead take time to compute, the values within an FRP system may be transiently out of sync during the update process. Furthermore, depending on the nature of the FRP system, it is possible to have nodes be updated more than once in a propagation.
Example
Consider integer variables a, b. Define sum and prod such that
sum := a + b,
prod := a * b.
Let's rewrite this example to JavaFX:
IntegerProperty a = new SimpleIntegerProperty();
IntegerProperty b = new SimpleIntegerProperty();
NumberBinding sum = a.add(b);
NumberBinding prod = a.multiply(b);
Now let's write a little consistency check:
InvalidationListener consistencyCheck = obs -> {
assert sum.intValue() == a.get() + b.get();
assert prod.intValue() == a.get() * b.get();
};
sum.addListener(consistencyCheck);
prod.addListener(consistencyCheck);
a.set(1);
b.set(2);
This code fails with an assertion error on the last line, because:
b is updated (to 2)
sum is updated (to 3)
`consistencyCheck` is triggered, `a == 1`, `b == 2`, but `prod == 0`, because `prod` has not been updated yet
This is a glitch — prod is temporarily inconsistent with a and b.
Glitch Elimination Using ReactFX
First note that ReactFX is not "glitch free" out of the box, but it gives you tools to eliminate glitches. Unless you take some conscious effort to use them, ReactFX is not more glitch-free than RX (e.g. rxJava).
The techniques to eliminate glitches in ReactFX rely on the fact that event propagation is synchronous. On the other hand, event propagation in RX is always asynchronous, thus these techniques cannot be implemented in an RX system.
In the example above, we want to defer listener notifications until both sum and prod have been updated. This is how to achieve this with ReactFX:
import org.reactfx.Guardian;
import org.reactfx.inhibeans.binding.Binding;
IntegerProperty a = new SimpleIntegerProperty();
IntegerProperty b = new SimpleIntegerProperty();
Binding<Number> sum = Binding.wrap(a.add(b)); // Binding imported from ReactFX
Binding<Number> prod = Binding.wrap(a.multiply(b)); // Binding imported from ReactFX
InvalidationListener consistencyCheck = obs -> {
assert sum.getValue().intValue() == a.get() + b.get();
assert prod.getValue().intValue() == a.get() * b.get();
};
sum.addListener(consistencyCheck);
prod.addListener(consistencyCheck);
// defer sum and prod listeners until the end of the block
Guardian.combine(sum, prod).guardWhile(() -> {
a.set(1);
b.set(2);
});

Short answer : glitch = inonconsistent/illegal/meaningless state.
Here is a relevant link : https://social.msdn.microsoft.com/Forums/en-US/bc2c4b71-c97b-428e-ad71-324055a3cd03/another-discussion-on-glitches-and-rx?forum=rx
Also, see the 29th minute of Sodium's author talk for another answer : http://youtu.be/gaG3tIb3Lbk.
And a relevant SOF answer : how to avoid glitches in Rx
So here is my understanding of what a glitch is based on Tomas' answer.
There is a dataflow graph, with 3 nodes : A, B, C
A->B
A->C
In this simple example, a glitch happens if I change A and that causes to change B but C has not been updated yet. This is a glitch.
C is not consistent with B.
Say B=2*A, C=2*A.
Then if B is not equal C then that is a glitch.

Here is an extremely short and theoretical example of a fatal "glitch" situation in C# RX
var t = Observable
.Interval(TimeSpan.FromSeconds(1))
.Publish()
.RefCount();
var s = t.CombineLatest(t, (t1,t2) => 1/(1-(t1-t2));
Since t1 and t2 both represent the latest value of the hot observable t, one would assume t1-t2 to always be 0. So s should always be 1.
But when subscribing to s, we indeed get 1 as the first observed value, but then we get a division by zero exception. In RxJS we would get NaN.
The reason is simple: a.CombineLatest(b, f) will react when either a or b produces a value, combining this new value and the last observed value of the other observable. This is by design, but from my experience, people using RX sometimes consider these to be glitches, especially when coming from other FRP libraries that have a different notion of "latest".
This is of course a contrived example, just meant to illustrate a misconception about CombineLatest.
Maybe CombineLatest should have been called WhenAny as in the ReactiveUI library, this would clarify the operational semantics?

Related

What is the order that reactive statements are executed in?

Let's say we have the following component script
let x = 0;
function increase() {
x += 1;
}
$: console.log(x)
$: if (x == 4) {
x = 0;
}
https://svelte.dev/repl/2bca979673114afea9fc6b37434653a3?version=3.29.0
Intuitively I would expect from cotinually calling increase, is to have the values 0,1,2,3,4,1,2,3,4,... logged to the console. But this is not the case. Instead, the second reactive statement runs first, and 4 is never logged; it is 0. Switching the order of the reactive statements has no effect.
How do you make the logging statement execute before the other one and what is the reason that it runs second, in the first place?
The order in which reactive statements that depends on the same variables are run is not specified / guaranteed by Svelte. You have to build your components with the expectation that they can be run in any order, and make sure that your code doesn't depend on any specific order.
You must not rely on a given order you observe in a specific case either -- it can change following a change in Svelte's internal implementation (e.g. new optimisations), or when the code of your own component changes (causing a different compiler output, that can change the order of reactive blocks for hard-to-anticipate reasons).
The reasons why this happens are highly technical (i.e. I don't really know), but they boil down to ease of implementation / optimization of the compiler. Reactive statements are a kind of async operations, that typically can't guarantee order of execution.
If you really need 2 operations to happen in a specific order then, for peace of mind, you need them in the same reactive block.
$: {
console.log(x) // op 1
if (x == 4) x = 0 // op 2
}

Understanding the continuation theorem in Scala

So, I was trying to learn about Continuation. I came across with the following saying (link):
Say you're in the kitchen in front of the refrigerator, thinking about a sandwich. You take a continuation right there and stick it in your pocket. Then you get some turkey and bread out of the refrigerator and make yourself a sandwich, which is now sitting on the counter. You invoke the continuation in your pocket, and you find yourself standing in front of the refrigerator again, thinking about a sandwich. But fortunately, there's a sandwich on the counter, and all the materials used to make it are gone. So you eat it. :-) — Luke Palmer
Also, I saw a program in Scala:
var k1 : (Unit => Sandwich) = null
reset {
shift { k : Unit => Sandwich) => k1 = k }
makeSandwich
}
val x = k1()
I don't really know the syntax of Scala (looks similar to Java and C mixed together) but I would like to understand the concept of Continuation.
Firstly, I tried to run this program (by adding it into main). But it fails, I think that it has a syntax error due to the ) near Sandwich but I'm not sure. I removed it but it still does not compile.
How to create a fully compiled example that shows the concept of the story above?
How this example shows the concept of Continuation.
In the link above there was the following saying: "Not a perfect analogy in Scala because makeSandwich is not executed the first time through (unlike in Scheme)". What does it mean?
Since you seem to be more interested in the concept of the "continuation" rather than specific code, let's forget about that code for a moment (especially because it is quite old and I don't really like those examples because IMHO you can't understand them correctly unless you already know what a continuation is).
Note: this is a very long answer with some attempts to describe what a continuations is and why it is useful. There are some examples in Scala-like pseudo-code none of which can actually be compiled and run (there is just one compilable example at the very end and it references another example from the middle of the answer). Expect to spend a significant amount of time just reading this answer.
Intro to continuations
Probably the first thing you should do to understand a continuation is to forget about how modern compilers for most of the imperative languages work and how most of the modern CPUs work and particularly the idea of the call stack. This is actually implementation details (although quite popular and quite useful in practice).
Assume you have a CPU that can execute some sequence of instructions. Now you want to have a high level languages that support the idea of methods that can call each other. The obvious problem you face is that the CPU needs some "forward only" sequence of commands but you want some way to "return" results from a sub-program to the caller. Conceptually it means that you need to have some way to store somewhere before the call all the state of the caller method that is required for it to continue to run after the result of the sub-program is computed, pass it to the sub-program and then ask the sub-program at the end to continue execution from that stored state. This stored state is exactly a continuation. In most of the modern environments those continuations are stored on the call stack and often there are some assembly instructions specifically designed to help handling it (like call and return). But again this is just implementation details. Potentially they might be stored in an arbitrary way and it will still work.
So now let's re-iterate this idea: a continuation is a state of the program at some point that is enough to continue its execution from that point, typically with no additional input or some small known input (like a return value of the called method). Running a continuation is different from a method call in that usually continuation never explicitly returns execution control back to the caller, it can only pass it to another continuation. Potentially you can create such a state yourself, but in practice for the feature to be useful you need some support from the compiler to build continuations automatically or emulate it in some other way (this is why the Scala code you see requires a compiler plugin).
Asynchronous calls
Now there is an obvious question: why continuations are useful at all? Actually there are a few more scenarios besides the simple "return" case. One such scenario is asynchronous programming. Actually if you do some asynchronous call and provide a callback to handle the result, this can be seen as passing a continuation. Unfortunately most of the modern languages do not support automatic continuations so you have to grab all the relevant state yourself. Another problem appears if you have some logic that needs a sequence of many async calls. And if some of the calls are conditional, you easily get to the callbacks hell. The way continuations help you avoid it is by allowing you build a method with effectively inverted control flow. With typical call it is the caller that knows the callee and expects to get a result back in a synchronous way. With continuations you can write a method with several "entry points" (or "return to points") for different stages of the processing logic that you can just pass to some other method and that method can still return to exactly that position.
Consider following example (in pseudo-code that is Scala-like but is actually far from the real Scala in many details):
def someBusinessLogic() = {
val userInput = getIntFromUser()
val firstServiceRes = requestService1(userInput)
val secondServiceRes = if (firstServiceRes % 2 == 0) requestService2v1(userInput) else requestService2v2(userInput)
showToUser(combineUserInputAndResults(userInput,secondServiceRes))
}
If all those calls a synchronous blocking calls, this code is easy. But assume all those get and request calls are asynchronous. How to re-write the code? The moment you put the logic in callbacks you loose the clarity of the sequential code. And here is where continuations might help you:
def someBusinessLogicCont() = {
// the method entry point
val userInput
getIntFromUserAsync(cont1, captureContinuationExpecting(entry1, userInput))
// entry/return point after user input
entry1:
val firstServiceRes
requestService1Async(userInput, captureContinuationExpecting(entry2, firstServiceRes))
// entry/return point after the first request to the service
entry2:
val secondServiceRes
if (firstServiceRes % 2 == 0) {
requestService2v1Async(userInput, captureContinuationExpecting(entry3, secondServiceRes))
// entry/return point after the second request to the service v1
entry3:
} else {
requestService2v2Async(userInput, captureContinuationExpecting(entry4, secondServiceRes))
// entry/return point after the second request to the service v2
entry4:
}
showToUser(combineUserInputAndResults(userInput, secondServiceRes))
}
It is hard to capture the idea in a pseudo-code. What I mean is that all those Async method never return. The only way to continue execution of the someBusinessLogicCont is to call the continuation passed into the "async" method. The captureContinuationExpecting(label, variable) call is supposed to create a continuation of the current method at the label with the input (return) value bound to the variable. With such a re-write you still has a sequential-looking business logic even with all those asynchronous calls. So now for a getIntFromUserAsync the second argument looks like just another asynchronous (i.e. never-returning) method that just requires one integer argument. Let's call this type Continuation[T]
trait Continuation[T] {
def continue(value: T):Nothing
}
Logically Continuation[T] looks like a function T => Unit or rather T => Nothing where Nothing as the return type signifies that the call actually never returns (note, in actual Scala implementation such calls do return, so no Nothing there, but I think conceptually it is easy to think about no-return continuations).
Internal vs external iteration
Another example is a problem of iteration. Iteration can be internal or external. Internal iteration API looks like this:
trait CollectionI[T] {
def forEachInternal(handler: T => Unit): Unit
}
External iteration looks like this:
trait Iterator[T] {
def nextValue(): Option[T]
}
trait CollectionE[T] {
def forEachExternal(): Iterator[T]
}
Note: often Iterator has two method like hasNext and nextValue returning T but it will just make the story a bit more complicated. Here I use a merged nextValue returning Option[T] where the value None means the end of the iteration and Some(value) means the next value.
Assuming the Collection is implemented by something more complicated than an array or a simple list, for example some kind of a tree, there is a conflict here between the implementer of the API and the API user if you use typical imperative language. And the conflict is over the simple question: who controls the stack (i.e. the easy to use state of the program)? The internal iteration is easier for the implementer because he controls the stack and can easily store whatever state is needed to move to the next item but for the API user the things become tricky if she wants to do some aggregation of the stored data because now she has to save the state between the calls to the handler somewhere. Also you need some additional tricks to let the user stop the iteration at some arbitrary place before the end of the data (consider you are trying to implement find via forEach). Conversely the external iteration is easy for the user: she can store all the state necessary to process data in any way in local variables but the API implementer now has to store his state between calls to the nextValue somewhere else. So fundamentally the problem arises because there is only one place to easily store the state of "your" part of the program (the call stack) and two conflicting users for that place. It would be nice if you could just have two different independent places for the state: one for the implementer and another for the user. And continuations provide exactly that. The idea is that we can pass execution control between two methods back and forth using two continuations (one for each part of the program). Let's change the signatures to:
// internal iteration
// continuation of the iterator
type ContIterI[T] = Continuation[(ContCallerI[T], ContCallerLastI)]
// continuation of the caller
type ContCallerI[T] = Continuation[(T, ContIterI[T])]
// last continuation of the caller
type ContCallerLastI = Continuation[Unit]
// external iteration
// continuation of the iterator
type ContIterE[T] = Continuation[ContCallerE[T]]
// continuation of the caller
type ContCallerE[T] = Continuation[(Option[T], ContIterE[T])]
trait Iterator[T] {
def nextValue(cont : ContCallerE[T]): Nothing
}
trait CollectionE[T] {
def forEachExternal(): Iterator[T]
}
trait CollectionI[T] {
def forEachInternal(cont : ContCallerI[T]): Nothing
}
Here ContCallerI[T] type, for example, means that this is a continuation (i.e. a state of the program) the expects two input parameters to continue running: one of type T (the next element) and another of type ContIterI[T] (the continuation to switch back). Now you can see that the new forEachInternal and the new forEachExternal+Iterator have almost the same signatures. The only difference in how the end of the iteration is signaled: in one case it is done by returning None and in other by passing and calling another continuation (ContCallerLastI).
Here is a naive pseudo-code implementation of a sum of elements in an array of Int using these signatures (an array is used instead of something more complicated to simplify the example):
class ArrayCollection[T](val data:T[]) : CollectionI[T] {
def forEachInternal(cont0 : ContCallerI[T], lastCont: ContCallerLastI): Nothing = {
var contCaller = cont0
for(i <- 0 to data.length) {
val contIter = captureContinuationExpecting(label, contCaller)
contCaller.continue(data(i), contIter)
label:
}
}
}
def sum(arr: ArrayCollection[Int]): Int = {
var sum = 0
val elem:Int
val iterCont:ContIterI[Int]
val contAdd0 = captureContinuationExpecting(labelAdd, elem, iterCont)
val contLast = captureContinuation(labelReturn)
arr.forEachInternal(contAdd0, contLast)
labelAdd:
sum += elem
val contAdd = captureContinuationExpecting(labelAdd, elem, iterCont)
iterCont.continue(contAdd)
// note that the code never execute this line, the only way to jump out of labelAdd is to call contLast
labelReturn:
return sum
}
Note how both implementations of the forEachInternal and of the sum methods look fairly sequential.
Multi-tasking
Cooperative multitasking also known as coroutines is actually very similar to the iterations example. Cooperative multitasking is an idea that the program can voluntarily give up ("yield") its execution control either to the global scheduler or to another known coroutine. Actually the last (re-written) example of sum can be seen as two coroutines working together: one doing iteration and another doing summation. But more generally your code might yield its execution to some scheduler that then will select which other coroutine to run next. And what the scheduler does is manages a bunch of continuations deciding which to continue next.
Preemptive multitasking can be seen as a similar thing but the scheduler is run by some hardware interruption and then the scheduler needs a way to create a continuation of the program being executed just before the interruption from the outside of that program rather than from the inside.
Scala examples
What you see is a really old article that is referring to Scala 2.8 (while current versions are 2.11, 2.12, and soon 2.13). As #igorpcholkin correctly pointed out, you need to use a Scala continuations compiler plugin and library. The sbt compiler plugin page has an example how to enable exactly that plugin (for Scala 2.12 and #igorpcholkin's answer has the magic strings for Scala 2.11):
val continuationsVersion = "1.0.3"
autoCompilerPlugins := true
addCompilerPlugin("org.scala-lang.plugins" % "scala-continuations-plugin_2.12.2" % continuationsVersion)
libraryDependencies += "org.scala-lang.plugins" %% "scala-continuations-library" % continuationsVersion
scalacOptions += "-P:continuations:enable"
The problem is that plugin is semi-abandoned and is not widely used in practice. Also the syntax has changed since the Scala 2.8 times so it is hard to get those examples running even if you fix the obvious syntax bugs like missing ( here and there. The reason of that state is stated on the GitHub as:
You may also be interested in https://github.com/scala/async, which covers the most common use case for the continuations plugin.
What that plugin does is emulates continuations using code-rewriting (I suppose it is really hard to implement true continuations over the JVM execution model). And under such re-writings a natural thing to represent a continuation is some function (typically called k and k1 in those examples).
So now if you managed to read the wall of text above, you can probably interpret the sandwich example correctly. AFAIU that example is an example of using continuation as means to emulate "return". If we re-sate it with more details, it could go like this:
You (your brain) are inside some function that at some points decides that it wants a sandwich. Luckily you have a sub-routine that knows how to make a sandwich. You store your current brain state as a continuation into the pocket and call the sub-routine saying to it that when the job is done, it should continue the continuation from the pocket. Then you make a sandwich according to that sub-routine messing up with your previous brain state. At the end of the sub-routine it runs the continuation from the pocket and you return to the state just before the call of the sub-routine, forget all your state during that sub-routine (i.e. how you made the sandwich) but you can see the changes in the outside world i.e. that the sandwich is made now.
To provide at least one compilable example with the current version of the scala-continuations, here is a simplified version of my asynchronous example:
case class RemoteService(private val readData: Array[Int]) {
private var readPos = -1
def asyncRead(callback: Int => Unit): Unit = {
readPos += 1
callback(readData(readPos))
}
}
def readAsyncUsage(rs1: RemoteService, rs2: RemoteService): Unit = {
import scala.util.continuations._
reset {
val read1 = shift(rs1.asyncRead)
val read2 = if (read1 % 2 == 0) shift(rs1.asyncRead) else shift(rs2.asyncRead)
println(s"read1 = $read1, read2 = $read2")
}
}
def readExample(): Unit = {
// this prints 1-42
readAsyncUsage(RemoteService(Array(1, 2)), RemoteService(Array(42)))
// this prints 2-1
readAsyncUsage(RemoteService(Array(2, 1)), RemoteService(Array(42)))
}
Here remote calls are emulated (mocked) with a fixed data provided in arrays. Note how readAsyncUsage looks like a totally sequential code despite the non-trivial logic of which remote service to call in the second read depending on the result of the first read.
For full example you need prepare Scala compiler to use continuations and also use a special compiler plugin and library.
The simplest way is a create a new sbt.project in IntellijIDEA with the following files: build.sbt - in the root of the project, CTest.scala - inside main/src.
Here is contents of both files:
build.sbt:
name := "ContinuationSandwich"
version := "0.1"
scalaVersion := "2.11.6"
autoCompilerPlugins := true
addCompilerPlugin(
"org.scala-lang.plugins" % "scala-continuations-plugin_2.11.6" % "1.0.2")
libraryDependencies +=
"org.scala-lang.plugins" %% "scala-continuations-library" % "1.0.2"
scalacOptions += "-P:continuations:enable"
CTest.scala:
import scala.util.continuations._
object CTest extends App {
case class Sandwich()
def makeSandwich = {
println("Making sandwich")
new Sandwich
}
var k1 : (Unit => Sandwich) = null
reset {
shift { k : (Unit => Sandwich) => k1 = k }
makeSandwich
}
val x = k1()
}
What the code above essentially does is calling makeSandwich function (in a convoluted manner). So execution result would be just printing "Making sandwich" into console. The same result would be achieved without continuations:
object CTest extends App {
case class Sandwich()
def makeSandwich = {
println("Making sandwich")
new Sandwich
}
val x = makeSandwich
}
So what's the point? My understanding is that we want to "prepare a sandwich", ignoring the fact that we may be not ready for that. We mark a point of time where we want to return to after all necessary conditions are met (i.e. we have all necessary ingredients ready). After we fetch all ingredients we can return to the mark and "prepare a sandwich", "forgetting that we were unable to do that in past". Continuations allow us to "mark point of time in past" and return to that point.
Now step by step. k1 is a variable to hold a pointer to a function which should allow to "create sandwich". We know it because k1 is declared so: (Unit => Sandwich).
However initially the variable is not initialized (k1 = null, "there are no ingredients to make a sandwich yet"). So we can't call the function preparing sandwich using that variable yet.
So we mark a point of execution where we want to return to (or point of time in past we want to return to) using "reset" statement.
makeSandwich is another pointer to a function which actually allows to make a sandwich. It's the last statement of "reset block" and hence it is passed to "shift" (function) as argument (shift { k : (Unit => Sandwich).... Inside shift we assign that argument to k1 variable k1 = k thus making k1 ready to be called as a function. After that we return to execution point marked by reset. The next statement is execution of function pointed to by k1 variable which is now properly initialized so finally we call makeSandwich which prints "Making sandwich" to a console. It also returns an instance of sandwich class which is assigned to x variable.
Not sure, probably it means that makeSandwich is not called inside reset block but just afterwards when we call it as k1().

Does drools support any form of "rule activation probability" (as in how close to firing is a rule)?

I'm wondering if there is anything in drools that can be used to determine how close a rule is (or has been) to being activated?
From all that I can tell, the standard drools doesn't support anything like it, I just wondered if I might have missed something.
I glanced at Drools Chance (https://github.com/droolsjbpm/drools-chance), but it seems that it hasn't been developed a lot anymore recently and doesn't seem ready for Drools 6.x.
I know that AgendaEventListeners can be used to intercept when a rule has fired but it doesn't look like there is anything to intercept if a single condition of a rule has been evaluated to true.
Am I missing something or is this a current limitation of drools to not have any support for this kind of thing?
Thanks!
Perhaps you could use a work around. Construct a set of extra rules that write metrics for when they fire depending on your definition of close--that could be 1..n parts of the LHS for the rule of interest and/or thresholds for nearness to any part of the LHS (say you want to know when a value approaches to with 90% of another value). For complex conditionals in source code (not Drools related), I've used approaches like the below to trace complicated and nested logic:
boolean a1 = property1 > property2
boolean a2 = (!isHigh || isMedium)
boolean a3 = property 4 == property5
System.out.println ("rule2: " + a1 + " " + a2 + " " + a3);
if (a1 && a2 && a3) {
...do something
}
This is related what I called "learning the reason for failure". Consider that you have to pass n qualifications. Rather than being told that you have failed you'd like to have a list of the "pass" (and "fail") criteria.
One rule evaluating all of this in a lump sum is no good. You have to write one rule for each of the n criteria and collect the positives with the fact holding the properties under survey. Finally, one low-priority rule can check whether you have all n ("hooray") and another one can tell you "sorry, no", but it can give you a list what succeeded (and what not).
Lots of effort, but good information is always costly.

Problems when merging a sampled Observable

I'm using rx-scala, which is a subproject of rx-java. I'll be using Scala syntax and hope that everyone understands.
I'm encountering odd behavior, and I don't know whether it's a bug or misusage of rx operators on my behalf.
Problem Statement
I have an ox: Observable[X] and a trigger observable tr: Observable[()]. I want an observable oy that is a transformation of ox using function f: Function[X,Y], but only when triggered, since f is potentially expensive.
If there is no transformed value for the last value of ox, then oy should be null.
Some remarks:
ox is hot, as it is the result of UI events.
ox behaves correctly (both values and timing), as I checked with println debugging.
oy fires at the correct times; it's just using outdated values of ox, when its a not-null value.
Current Code
oy = ox.sample(tr).map(f).merge(ox.map(x => null))
The problem with the above code is: It works initally, but after some time, when triggering tr, oy is applying f to old values of ox. When not changing ox, if I trigger tr repeatedly, the results get newer and eventually catch up.
If I remove the merge to not reset to null, then everything works fine (probably, as the effect appears non-deterministic).
Question
My presented code is buggy.
I'd like to know whether I'm doing something wrong.
I welcome alternative ways of achieving what I need.
For the Jave people
generics/type annotation: ox: Observable[X] means Observable<X> ox
lambdas: x => null means x -> null
I'm now using the following solution, which is short and apparently doesn't cause the problem to turn up:
tr.withLatestFrom(ox)((_,x) => f(x)) merge problem.map(_ => null)

Why do immutable objects enable functional programming?

I'm trying to learn scala and I'm unable to grasp this concept. Why does making an object immutable help prevent side-effects in functions. Can anyone explain like I'm five?
Interesting question, a bit difficult to answer.
Functional programming is very much about using mathematics to reason about programs. To do so, one needs a formalism that describe the programs and how one can make proofs about properties they might have.
There are many models of computation that provide such formalisms, such as lambda calculus and turing machines. And there's a certain degree of equivalency between them (see this question, for a discussion).
In a very real sense, programs with mutability and some other side effects have a direct mapping to functional program. Consider this example:
a = 0
b = 1
a = a + b
Here are two ways of mapping it to functional program. First one, a and b are part of a "state", and each line is a function from a state into a new state:
state1 = (a = 0, b = ?)
state2 = (a = state1.a, b = 1)
state3 = (a = state2.a + state2.b, b = state2.b)
Here's another, where each variable is associated with a time:
(a, t0) = 0
(b, t1) = 1
(a, t2) = (a, t0) + (b, t1)
So, given the above, why not use mutability?
Well, here's the interesting thing about math: the less powerful the formalism is, the easier it is to make proofs with it. Or, to put it in other words, it's too hard to reason about programs that have mutability.
As a consequence, there's very little advance regarding concepts in programming with mutability. The famous Design Patterns were not arrived at through study, nor do they have any mathematical backing. Instead, they are the result of years and years of trial and error, and some of them have since proved to be misguided. Who knows about the other dozens "design patterns" seen everywhere?
Meanwhile, Haskell programmers came up with Functors, Monads, Co-monads, Zippers, Applicatives, Lenses... dozens of concepts with mathematical backing and, most importantly, actual patterns of how code is composed to make up programs. Things you can use to reason about your program, increase reusability and improve correctness. Take a look at the Typeclassopedia for examples.
It's no wonder people not familiar with functional programming get a bit scared with this stuff... by comparison, the rest of the programming world is still working with a few decades-old concepts. The very idea of new concepts is alien.
Unfortunately, all these patterns, all these concepts, only apply with the code they are working with does not contain mutability (or other side effects). If it does, then their properties cease to be valid, and you can't rely on them. You are back to guessing, testing and debugging.
In short, if a function mutates an object then it has side effects. Mutation is a side effect. This is just true by definition.
In truth, in a purely functional language it should not matter if an object is technically mutable or immutable, because the language will never "try" to mutate an object anyway. A pure functional language doesn't give you any way to perform side effects.
Scala is not a pure functional language, though, and it runs in the Java environment in which side effects are very popular. In this environment, using objects that are incapable of mutation encourages you to use a pure functional style because it makes a side-effect oriented style impossible. You are using data types to enforce purity because the language does not do it for you.
Now I will say a bunch of other stuff in the hope that it helps this make sense to you.
Fundamental to the concept of a variable in functional languages is referential transparency.
Referential transparency means that there is no difference between a value, and a reference to that value. In a language where this is true, it makes it much simpler to think about a program works, since you never have to stop and ask, is this a value, or a reference to a value? Anyone who's ever programmed in C recognizes that a great part of the challenge of learning that paradigm is knowing which is which at all times.
In order to have referential transparency, the value that a reference refers to can never change.
(Warning, I'm about to make an analogy.)
Think of it this way: in your cell phone, you have saved some phone numbers of other people's cell phones. You assume that whenever you call that phone number, you will reach the person you intend to talk to. If someone else wants to talk to your friend, you give them the phone number and they reach that same person.
If someone changes their cell phone number, this system breaks down. Suddenly, you need to get their new phone number if you want to reach them. Maybe you call the same number six months later and reach a different person. Calling the same number and reaching a different person is what happens when functions perform side effects: you have what seems to be the same thing, but you try to use it, it turns out it's different now. Even if you expected this, what about all the people you gave that number to, are you going to call them all up and tell them that the old number doesn't reach the same person anymore?
You counted on the phone number corresponding to that person, but it didn't really. The phone number system lacks referential transparency: the number isn't really ALWAYS the same as the person.
Functional languages avoid this problem. You can give out your phone number and people will always be able to reach you, for the rest of your life, and will never reach anybody else at that number.
However, in the Java platform, things can change. What you thought was one thing, might turn into another thing a minute later. If this is the case, how can you stop it?
Scala uses the power of types to prevent this, by making classes that have referential transparency. So, even though the language as a whole isn't referentially transparent, your code will be referentially transparent as long as you use immutable types.
Practically speaking, the advantages of coding with immutable types are:
Your code is simpler to read when the reader doesn't have to look out for surprising side effects.
If you use multiple threads, you don't have to worry about locking because shared objects can never change. When you have side effects, you have to really think through the code and figure out all the places where two threads might try to change the same object at the same time, and protect against the problems that this might cause.
Theoretically, at least, the compiler can optimize some code better if it uses only immutable types. I don't know if Java can do this effectively, though, since it allows side effects. This is a toss-up at best, anyway, because there are some problems that can be solved much more efficiently by using side effects.
I'm running with this 5 year old explanation:
class Account(var myMoney:List[Int] = List(10, 10, 1, 1, 1, 5)) {
def getBalance = println(myMoney.sum + " dollars available")
def myMoneyWithInterest = {
myMoney = myMoney.map(_ * 2)
println(myMoney.sum + " dollars will accru in 1 year")
}
}
Assume we are at an ATM and it is using this code to give us account information.
You do the following:
scala> val myAccount = new Account()
myAccount: Account = Account#7f4a6c40
scala> myAccount.getBalance
28 dollars available
scala> myAccount.myMoneyWithInterest
56 dollars will accru in 1 year
scala> myAccount.getBalance
56 dollars available
We mutated the account balance when we wanted to check our current balance plus a years worth of interest. Now we have an incorrect account balance. Bad news for the bank!
If we were using val instead of var to keep track of myMoney in the class definition, we would not have been able to mutate the dollars and raise our balance.
When defining the class (in the REPL) with val:
error: reassignment to val
myMoney = myMoney.map(_ * 2
Scala is telling us that we wanted an immutable value but are trying to change it!
Thanks to Scala, we can switch to val, re-write our myMoneyWithInterest method and rest assured that our Account class will never alter the balance.
One important property of functional programming is: If I call the same function twice with the same arguments I'll get the same result. This makes reasoning about code much easier in many cases.
Now imagine a function returning the attribute content of some object. If that content can change the function might return different results on different calls with the same argument. => no more functional programming.
First a few definitions:
A side effect is a change in state -- also called a mutation.
An immutable object is an object which does not support mutation, (side effects).
A function which is passed mutable objects (either as parameters or in the global environment) may or may not produce side effects. This is up to the implementation.
However, it is impossible for a function which is passed only immutable objects (either as parameters or in the global environment) to produce side effects. Therefore, exclusive use of immutable objects will preclude the possibility of side effects.
Nate's answer is great, and here is some example.
In functional programming, there is an important feature that when you call a function with same argument, you always get same return value.
This is always true for immutable objects, because you can't modify them after create it:
class MyValue(val value: Int)
def plus(x: MyValue) = x.value + 10
val x = new MyValue(10)
val y = plus(x) // y is 20
val z = plus(x) // z is still 20, plus(x) will always yield 20
But if you have mutable objects, you can't guarantee that plus(x) will always return same value for same instance of MyValue.
class MyValue(var value: Int)
def plus(x: MyValue) = x.value + 10
val x = new MyValue(10)
val y = plus(x) // y is 20
x.value = 30
val z = plus(x) // z is 40, you can't for sure what value will plus(x) return because MyValue.value may be changed at any point.
Why do immutable objects enable functional programming?
They don't.
Take one definition of "function," or "prodecure," "routine" or "method," which I believe applies to many programming languages: "A section of code, typically named, accepting arguments and/or returning a value."
Take one definition of "functional programming:" "Programming using functions." The ability to program with functions is indepedent of whether state is modified.
For instance, Scheme is considered a functional programming language. It features tail calls, higher-order functions and aggregate operations using functions. It also has mutable objects. While mutability destroys some nice mathematical qualities, it does not necessarily prevent "functional programming."
I've read all the answers and they don't satisfy me, because they mostly talk about "immutability", and not about its relation to FP.
The main question is:
Why do immutable objects enable functional programming?
So I've searched a bit more and I have another answer, I believe the easy answer to this question is: "Because Functional Programming is basically defined on the basis of functions that are easy to reason about". Here's the definition of Functional Programming:
The process of building software by composing pure functions.
If a function is not pure -- which means receiving the same input, it's not guaranteed to always produce the same output (e.g., if the function relies on a global object, or date and time, or a random number to compute the output) -- then that function is unpredictable, that's it! Now exactly the same story goes about "immutability" as well, if objects are not immutable, a function with the same object as its input may have different results (aka side effects) each time used, and this will make it hard to reason about the program.
I first tried to put this in a comment, but it got longer than the limit, I'm by no means a pro so please take this answer with a grain of salt.