Finding the diameter of a graph - matlab

In MATLAB I'm dropping points into the square [0,1]X[0,1] uniformly at random. I'm then placing an edge between two points if the distance between the two points is less than 0.25. The code to do this (and plot the resulting graph is below).
num_Rx = 50
Rx_positions = rand(num_Rx,2);
%Generate edges between pairs of within norm of 0.25.
adj_matrix = zeros(num_Rx, num_Rx);
for i=1:num_Rx
for j=i+1:num_Rx
dist = norm(Rx_positions(i,:) - Rx_positions(j,:));
if dist < 0.25;
adj_matrix(i,j) = 1;
end
end
end
figure
gplot(adj_matrix, Rx_positions)
i.e. this is an undirected graph, with all edge weights equal to 1.
To find the diameter I want to call graphallshortestpaths() (http://www.mathworks.co.uk/help/bioinfo/ref/graphallshortestpaths.html), and take the maximum value returned (the diameter is the longest shortest path).
However, I'm having difficulty calling this function - I can't figure out how to make a call like the examples, from my adjacency matrix and/or my list of node positions. Specifically I don't understand any of the examples, how the matlab code given corresponds to the data presented.
How would I go about doing this.

It appears that all you're missing is converting your adjacency matrix to a sparse matrix. This should give you what you're looking for:
adj_sparse = sparse(adj_matrix);
distances = graphallshortestpaths(adj_sparse);
% if you don't care which nodes produce the
% longest shortest path, omit long_ind & long_sub
[diameter, long_ind] = max(distances(:));
long_sub = ind2sub(size(distances), long_ind);

Related

Recursively sampling a triangle from its vertices?

I need to evenly sample a triangle just using its vertices (which I have in cartesian coordinates). I need to do it recursively (or at least in generations, where I can use the new point before calculating the next). One example would be like this:
take the 3 parent points (in the first execution the vertices)
calculate their midpoint as the child
get all new possible combinations of the child with 2 of its parents
repeat a set amount of times.
Problem: This does not yield an even distribution, but some (nice) pattern.
Using the distance to the parents as an abort criterion enhances the performance by a bit, but the resolution close to the vertices and the midpoint is really bad.
The function currently looks like this:
function points = distMidPoint(parents, distMax)
child = mean(parents);
if any(vecnorm(parents - child,2,2) <= distMax)
% check if distance to the parents falls below a certain threshold
points = [];
return
end
points = child;
for iParents = nchoosek(1:size(parents,1),size(parents,1)-1)'
% concatenate child and any combination of two parents and call function again
newPoint = distMidPoint([parents(iParents,:); child], distMax);
points = [points; newPoint];
end
end
Is there an algorithm I just don't know about that does this or do you have a better idea? As I mentioned it doesn't have to be recursive, it was just my first intuition.
Edit: The algorithm works fine for 2 "vertices" that I connect with a line:
It sounds like you're looking to subdivide your triangle into smaller, equally sized triangles.
One reasonable way to do this would be to recursively divide the triangle into four smaller triangles by "chopping off the corners." This is similar to the Sierpinski triangle, but you would subdivide all four subdivisions in each step.
You can construct a list of your triangles with the following algorithm (this is Matlab-like pseudocode, since I no longer have a valid license):
% takes the vertices of the triangle and the number of times to subdivide.
function points = subdivide(vertices, depth)
if depth <= 0
points = [[v1, v2, v3]] % list of triangles
else
s1 = [v1, midpoint(v1, v2), midpoint(v1, v3)]
s2 = [v2, midpoint(v2, v3), midpoint(v2, v1)]
s3 = [v3, midpoint(v3, v1), midpoint(v3, v2)]
s4 = [midpoint(v1, v2), midpoint(v2, v3), midpoint(v3, v1)]
points = cat(1,
subdivide(s1, depth-1),
subdivide(s2, depth-1),
subdivide(s3, depth-1),
subdivide(s4, depth-1)
)
end
end
Note: here, a triangle is a list of three points. The input is a triangle and the number of times to subdivide. The result is a list of triangles. The midpoint should be easy to write.
Note that the number of triangles in the result is 4^depth (grows exponentially), so don't make it too big. I tried implementing this algorithm in Python, and here's the result with depth=5:

Fitting largest circle in free area in image with distributed particle

I am working on images to detect and fit the largest possible circle in any of the free areas of an image containing distributed particles:
(able to detect the location of particle).
One direction is to define a circle touching any 3-point combination, checking if the circle is empty, then finding the largest circle among all empty circles. However, it leads to a huge number of combination i.e. C(n,3), where n is the total number of particles in the image.
I would appreciate if anyone can provide me any hint or alternate method that I can explore.
Lets do some maths my friend, as maths will always get to the end!
Wikipedia:
In mathematics, a Voronoi diagram is a partitioning of a plane into
regions based on distance to points in a specific subset of the plane.
For example:
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
voronoi(x,y);
The nice thing about this diagram is that if you notice, all the edges/vertices of those blue areas are all to equal distance to the points around them. Thus, if we know the location of the vertices, and compute the distances to the closest points, then we can choose the vertex with highest distance as our center of the circle.
Interestingly, the edges of a Voronoi regions are also defined as the circumcenters of the triangles generated by a Delaunay triangulation.
So if we compute the Delaunay triangulation of the area, and their circumcenters
dt=delaunayTriangulation([x;y].');
cc=circumcenter(dt); %voronoi edges
And compute the distances between the circumcenters and any of the points that define each triangle:
for ii=1:size(cc,1)
if cc(ii,1)>0 && cc(ii,1)<5 && cc(ii,2)>0 && cc(ii,2)<5
point=dt.Points(dt.ConnectivityList(ii,1),:); %the first one, or any other (they are the same distance)
distance(ii)=sqrt((cc(ii,1)-point(1)).^2+(cc(ii,2)-point(2)).^2);
end
end
Then we have the center (cc) and radius (distance) of all possible circles that have no point inside them. We just need the biggest one!
[r,ind]=max(distance); %Tada!
Now lets plot
hold on
ang=0:0.01:2*pi;
xp=r*cos(ang);
yp=r*sin(ang);
point=cc(ind,:);
voronoi(x,y)
triplot(dt,'color','r','linestyle',':')
plot(point(1)+xp,point(2)+yp,'k');
plot(point(1),point(2),'g.','markersize',20);
Notice how the center of the circle is on one vertex of the Voronoi diagram.
NOTE: this will find the center inside [0-5],[0-5]. you can easily modify it to change this constrain. You can also try to find the circle that fits on its entirety inside the interested area (as opposed to just the center). This would require a small addition in the end where the maximum is obtained.
I'd like to propose another solution based on a grid search with refinement. It's not as advanced as Ander's or as short as rahnema1's, but it should be very easy to follow and understand. Also, it runs quite fast.
The algorithm contains several stages:
We generate an evenly-spaced grid.
We find the minimal distances of points in the grid to all provided points.
We discard all points whose distances are below a certain percentile (e.g. 95th).
We choose the region which contains the largest distance (this should contain the correct center if my initial grid is fine enough).
We create a new meshgrid around the chosen region and find distances again (this part is clearly sub-optimal, because the distances are computed to all points, including far and irrelevant ones).
We iterate the refinement within the region, while keeping an eye on the variance of the top 5% of values -> if it drops below some preset threshold we break.
Several notes:
I have made the assumption that circles cannot go beyond the scattered points' extent (i.e. the bounding square of the scatter acts as an "invisible wall").
The appropriate percentile depends on how fine the initial grid is. This will also affect the amount of while iterations, and the optimal initial value for cnt.
function [xBest,yBest,R] = q42806059
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
%% Find the approximate region(s) where there exists a point farthest from all the rest:
xExtent = linspace(min(x),max(x),numel(x));
yExtent = linspace(min(y),max(y),numel(y)).';
% Create a grid:
[XX,YY] = meshgrid(xExtent,yExtent);
% Compute pairwise distance from grid points to free points:
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
% Intermediate plot:
% figure(); plot(x,y,'.k'); hold on; contour(XX,YY,D); axis square; grid on;
% Remove irrelevant candidates:
D(D<prctile(D(:),95)) = NaN;
D(D > xExtent | D > yExtent | D > yExtent(end)-yExtent | D > xExtent(end)-xExtent) = NaN;
%% Keep only the region with the largest distance
L = bwlabel(~isnan(D));
[~,I] = max(table2array(regionprops('table',L,D,'MaxIntensity')));
D(L~=I) = NaN;
% surf(XX,YY,D,'EdgeColor','interp','FaceColor','interp');
%% Iterate until sufficient precision:
xExtent = xExtent(~isnan(min(D,[],1,'omitnan')));
yExtent = yExtent(~isnan(min(D,[],2,'omitnan')));
cnt = 1; % increase or decrease according to the nature of the problem
while true
% Same ideas as above, so no explanations:
xExtent = linspace(xExtent(1),xExtent(end),20);
yExtent = linspace(yExtent(1),yExtent(end),20).';
[XX,YY] = meshgrid(xExtent,yExtent);
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
D(D<prctile(D(:),95)) = NaN;
I = find(D == max(D(:)));
xBest = XX(I);
yBest = YY(I);
if nanvar(D(:)) < 1E-10 || cnt == 10
R = D(I);
break
end
xExtent = (1+[-1 +1]*10^-cnt)*xBest;
yExtent = (1+[-1 +1]*10^-cnt)*yBest;
cnt = cnt+1;
end
% Finally:
% rectangle('Position',[xBest-R,yBest-R,2*R,2*R],'Curvature',[1 1],'EdgeColor','r');
The result I'm getting for Ander's example data is [x,y,r] = [0.7832, 2.0694, 0.7815] (which is the same). The execution time is about half of Ander's solution.
Here are the intermediate plots:
Contour of the largest (clear) distance from a point to the set of all provided points:
After considering distance from the boundary, keeping only the top 5% of distant points, and considering only the region which contains the largest distance (the piece of surface represents the kept values):
And finally:
You can use bwdist from Image Processing Toolbox to compute the distance transform of the image. This can be regarded as a method to create voronoi diagram that well explained in #AnderBiguri's answer.
img = imread('AbmxL.jpg');
%convert the image to a binary image
points = img(:,:,3)<200;
%compute the distance transform of the binary image
dist = bwdist(points);
%find the circle that has maximum radius
radius = max(dist(:));
%find position of the circle
[x y] = find(dist == radius);
imshow(dist,[]);
hold on
plot(y,x,'ro');
The fact that this problem can be solved using a "direct search" (as can be seen in another answer) means one can look at this as a global optimization problem. There exist various ways to solve such problems, each appropriate for certain scenarios. Out of my personal curiosity I have decided to solve this using a genetic algorithm.
Generally speaking, such an algorithm requires us to think of the solution as a set of "genes" subject to "evolution" under a certain "fitness function". As it happens, it's quite easy to identify the genes and the fitness function in this problem:
Genes: x , y, r.
Fitness function: technically, maximum area of circle, but this is equivalent to the maximum r (or minimum -r, since the algorithm requires a function to minimize).
Special constraint - if r is larger than the euclidean distance to the closest of the provided points (that is, the circle contains a point), the organism "dies".
Below is a basic implementation of such an algorithm ("basic" because it's completely unoptimized, and there is lot of room for optimizationno pun intended in this problem).
function [x,y,r] = q42806059b(cloudOfPoints)
% Problem setup
if nargin == 0
rng(1)
cloudOfPoints = rand(100,2)*5; % equivalent to Ander's initialization.
end
%{
figure(); plot(cloudOfPoints(:,1),cloudOfPoints(:,2),'.w'); hold on; axis square;
set(gca,'Color','k'); plot(0.7832,2.0694,'ro'); plot(0.7832,2.0694,'r*');
%}
nVariables = 3;
options = optimoptions(#ga,'UseVectorized',true,'CreationFcn',#gacreationuniform,...
'PopulationSize',1000);
S = max(cloudOfPoints,[],1); L = min(cloudOfPoints,[],1); % Find geometric bounds:
% In R2017a: use [S,L] = bounds(cloudOfPoints,1);
% Here we also define distance-from-boundary constraints.
g = ga(#(g)vectorized_fitness(g,cloudOfPoints,[L;S]), nVariables,...
[],[], [],[], [L 0],[S min(S-L)], [], options);
x = g(1); y = g(2); r = g(3);
%{
plot(x,y,'ro'); plot(x,y,'r*');
rectangle('Position',[x-r,y-r,2*r,2*r],'Curvature',[1 1],'EdgeColor','r');
%}
function f = vectorized_fitness(genes,pts,extent)
% genes = [x,y,r]
% extent = [Xmin Ymin; Xmax Ymax]
% f, the fitness, is the largest radius.
f = min(pdist2(genes(:,1:2), pts, 'euclidean'), [], 2);
% Instant death if circle contains a point:
f( f < genes(:,3) ) = Inf;
% Instant death if circle is too close to boundary:
f( any( genes(:,3) > genes(:,1:2) - extent(1,:) | ...
genes(:,3) > extent(2,:) - genes(:,1:2), 2) ) = Inf;
% Note: this condition may possibly be specified using the A,b inputs of ga().
f(isfinite(f)) = -genes(isfinite(f),3);
%DEBUG:
%{
scatter(genes(:,1),genes(:,2),10 ,[0, .447, .741] ,'o'); % All
z = ~isfinite(f); scatter(genes(z,1),genes(z,2),30,'r','x'); % Killed
z = isfinite(f); scatter(genes(z,1),genes(z,2),30,'g','h'); % Surviving
[~,I] = sort(f); scatter(genes(I(1:5),1),genes(I(1:5),2),30,'y','p'); % Elite
%}
And here's a "time-lapse" plot of 47 generations of a typical run:
(Where blue points are the current generation, red crosses are "insta-killed" organisms, green hexagrams are the "non-insta-killed" organisms, and the red circle marks the destination).
I'm not used to image processing, so it's just an Idea:
Implement something like a gaussian filter (blur) which transforms each particle (pixels) to a round gradiant with r=image_size (all of them overlapping). This way, you should get a picture where the most white pixels should be the best results. Unfortunately, the demonstration in gimp failed because the extreme blurring made the dots disappearing.
Alternatively, you could incrementelly extend all existing pixels by marking all neighbour pixels in an area (example: r=4), the pixels left would be the same result (those with the biggest distance to any pixel)

Finding largest empty rectangle(disorientated) in 2D Point Cloud

As described, I would like to find the largest empty rectangle in a given 2D point cloud. This information will be then used to get parallel lines shown as green lines in the images, which will then be used to get the angle the LiDAR has rotated.
I've tried convex hull, boundary, and alpha shape functions in matlab with this point cloud data. From the looks of it, I think i have to
(1) break the point cloud into two chunks (gift wrap algo?) and then
(2) apply boundary function; With coordinates extracts from boundary function,
(3) I'm thinking to run RANSAC line fitting.
However, RANSAC needs more points to judge the "fitness" of the line. Currently I'm exploring Hough Transform to see if that line detection would work for this case.
Thus the question here is,
(1) am I in the right track to find the green lines? Or is there a better way?
(2) How to get the angular value/gradient from the line when the line is vertical (tan(90) = inf)
The second image depicts the origin may be in the center of the cloud points or at an offset. One can assume there will be parallel lines with varying distance from the center
You can use kmeans clustering to find two clusters then find two points each from a cluster that distance between them is minimum
%a function for rotation of points
function out = rot(theta,data)
mat = [cos(theta), -sin(theta);
sin(theta), cos(theta)];
out = data * mat.';
end
a= [rand(505,1)*.4 , rand(505,1) ];
b= [rand(500,1)*.4 + .6 , rand(500,1)];
a = [a;b];
rt = rot(.4,a);
%kmeans clustering
km=kmeans(rt,2);
class1 = rt(km==1,:);
class2=rt(km==2,:);
%find min distance
[srch, d] = dsearchn(class1, class2);
[mn, I] = min(d);
plot(rt(:,1), rt(:,2),'.')
hold on
p1 = class1(srch(I),:);
p2 = class2(I,:);
plot(p1(1),p1(2),'*r')
plot(p2(1),p2(2),'*g')
xy = [class1(srch(I),:);class2(I,:)]
plot(xy(:,1),xy(:,2),'-g')
axis equal

Only plot lines of specific length

Below is an image showing a contour plot with areas of interest that have have been connected up by using their centroids. What I want to achieve is that only lines of a certain length are plotted. Currently, every point has a line drawn to every other point.
C=contourf(K{i});
[Area,Centroid] = Contour2Area(C);
% This converts any entries that are negative into a positive value
% of the same magnitiude
indices{i} = find( Centroid < 0);
Centroid(indices{i})=Centroid(indices{i}) * -1; %set all
% Does the same but for positive (+500)
indices{i} = find( Area > 500);
Area(indices{i})=0;
[sortedAreaVal, sortedAreaInd] = sort(Area, 'descend');
maxAreaVals = sortedAreaVal(1:10)';
maxAreaInd = sortedAreaInd(1:10)';
xc=Centroid(1,:); yc=Centroid(2,:);
hold on; plot(xc,yc,'-');
It would be very useful if there was a way of only plotting the lines that fall below a specific threshold. The next step will be to label and measure each line. Thanks in advance for your time.
If xc and yc are the x and y coordinates of the centroids, then you could do something like this:
sqrt(sum(diff([x,y],1).^2,2))
What this does is take the difference between successive [x,y] data points, then calculate the Euclidean distance between them. You then have all the information you need to select the ones you want and label the lengths.
One thing though, this will only compute distances between successive centroids. I wrote it this way because it appears that's what you're trying to do above. If you are interested in finding out the distances between all centroids, you would have to loop through and compute the distances.
Something along the lines of:
for i=1:length(xc)-1
for j=i+1:length(xc)
% distance calculation here...
Hope this helps.

Matlab calculating nearest neighbour distance for all (u, v) vectors in an array

I am trying to calculate the distance between nearest neighbours within a nx2 matrix like the one shown below
point_coordinates =
11.4179 103.1400
16.7710 10.6691
16.6068 119.7024
25.1379 74.3382
30.3651 23.2635
31.7231 105.9109
31.8653 36.9388
%for loop going from the top of the vector column to the bottom
for counter = 1:size(point_coordinates,1)
%current point defined selected
current_point = point_coordinates(counter,:);
%math to calculate distance between the current point and all the points
distance_search= point_coordinates-repmat(current_point,[size(point_coordinates,1) 1]);
dist_from_current_point = sqrt(distance_search(:,1).^2+distance_search(:,2).^2);
%line to omit self subtraction that gives zero
dist_from_current_point (dist_from_current_point <= 0)=[];
%gives the shortest distance calculated for a certain vector and current_point
nearest_dist=min(dist_from_current_point);
end
%final line to plot the u,v vectors and the corresponding nearest neighbour
%distances
matnndist = [point_coordinates nearest_dist]
I am not sure how to structure the 'for' loop/nearest_neighbour line to be able to get the nearest neighbour distance for each u,v vector.
I would like to have, for example ;
for the first vector you could have the coordinates and the corresponding shortest distance, for the second vector another its shortest distance, and this goes on till n
Hope someone can help.
Thanks
I understand you want to obtain the minimum distance between different points.
You can compute the distance for each pair of points with bsxfun; remove self-distances; minimize. It's more computationally efficient to work with squared distances, and take the square root only at the end.
n = size(point_coordinates,1);
dist = bsxfun(#minus, point_coordinates(:,1), point_coordinates(:,1).').^2 + ...
bsxfun(#minus, point_coordinates(:,2), point_coordinates(:,2).').^2;
dist(1:n+1:end) = inf; %// remove self-distances
min_dist = sqrt(min(dist(:)));
Alternatively, you could use pdist. This avoids computing each distance twice, and also avoids self-distances:
dist = pdist(point_coordinates);
min_dist = min(dist(:));
If I can suggest a built-in function, use knnsearch from the statistics toolbox. What you are essentially doing is a K-Nearest Neighbour (KNN) algorithm, but you are ignoring self-distances. The way you would call knnsearch is in the following way:
[idx,d] = knnsearch(X, Y, 'k', k);
In simple terms, the KNN algorithm returns the k closest points to your data set given a query point. Usually, the Euclidean distance is the distance metric that is used. For MATLAB's knnsearch, X is a 2D array that consists of your dataset where each row is an observation and each column is a variable. Y would be the query points. Y is also a 2D array where each row is a query point and you need to have the same number of columns as X. We would also specify the flag 'k' to denote how many closest points you want returned. By default, k = 1.
As such, idx would be a N x K matrix, where N is the total number of query points (number of rows of Y) and K would be those k closest points to the dataset for each query point we have. idx indicates the particular points in your dataset that were closest to each query. d is also a N x K matrix that returns the smallest distances for these corresponding closest points.
As such, what you want to do is find the closest point for your dataset to each of the other points, ignoring self-distances. Therefore, you would set both X and Y to be the same, and set k = 2, discarding the first column of both outputs to get the result you're looking for.
Therefore:
[idx,d] = knnsearch(point_coordinates, point_coordinates, 'k', 2)
idx = idx(:,2);
d = d(:,2);
We thus get for idx and d:
>> idx
idx =
3
5
1
1
7
3
5
>> d
d =
17.3562
18.5316
17.3562
31.9027
13.7573
20.4624
13.7573
As such, this tells us that for the first point in your data set, it matched with point #3 the best. This matched with the closest distance of 17.3562. For the second point in your data set, it matched with point #5 the best with the closest distance being 18.5316. You can continue on with the rest of the results in a similar pattern.
If you don't have access to the statistics toolbox, consider reading my StackOverflow post on how I compute KNN from first principles.
Finding K-nearest neighbors and its implementation
In fact, it is very similar to Luis Mendo's post to you earlier.
Good luck!