Easy way to print full solution (all decision variables) in minizinc - minizinc

The zinc spec says this:
If no output item is present, the implementation should print all the global variables and their values in a readable format.
However this does not appear to work with minizinc version 1.6.0:
G12 MiniZinc evaluation driver, version 1.6.0
I've tried the default command (minizinc) and mzn-gecode.
I'd really like to avoid repeating all the variable names in the output expression. What I really want is to have all decision variables output in some structured format (e.g. YAML), but I'd settle for some way to avoid this repetition.
To clarify: my model doesn't match the typical examples of CSP, e.g. there's no big array or matrix. It's just a fairly big (in relative terms) set of individual decision variables.
EDIT: bug created.
EDIT2: bug is now fixed in the minizinc 2.0 git repository so it conforms to the spec.

What I know, all FlatZinc solver just show a "----------" for every solution when there is no defined output item in the model. So it seems that the spec is wrong/obsolete on this part.
There have been some (more or less radical) changes regarding the output item during the years. In some early MiniZinc version it worked the way the spec described, and it was quite handy when modelling a problem (though it was very hard to get nice output). It was a real nuisance when the behaviour was changed so an output item was required for showing the result.
Interestingly, Zinc (the "big brother" of MiniZinc, http://www.minizinc.org/g12_www/zinc/ ) works as described i.e. shows all global variables when there is no output item. Perhaps the spec writers just forget to mention that MiniZinc differs.

Related

Uniform list pretty-printer

It is known that default printer can be confusing wrt lists because of no output for empty lists and 3 different notations being mixed (, vs (x;y;z) vs 1 2 3) and not obvious indentation/columnization (which is apparently optimized for table data). I am currently using -3! but it is still not ideal.
Is there a ready-made pretty-printer that has consistent uniform output format (basically what I am used to in any other language where list is not special)?
I've started using .j.j for string outputs in error messages more recently in preference to -3!. Mainly I think it is easier to parse in a text log, but also doesn't truncate in the same way.
It still transforms atoms and lists differently so it might not exactly meet your needs, if you really want that you could compose it with the old "ensure this is a list" trick:
myPrinter:('[.j.j;(),])
You might need to supply some examples to better explain your issues and your use-case for pretty-printing.
In general -3! is the most clear visual representation of the data. It is the stringified equivalent to another popular display method which is 0N!.
The parse function is useful for understanding how the interpreter reads/executes commands but I don't think that will be useful in your case

How to automatically convert a Matlab script into a Matlab function?

My problem is the following:
I have very many (~1000) mutually calling Matlab scripts, which are very poorly written, regularly damage each other's environments and generally became unmanageable.
One of the reasons I even got this problem is that I need to write a testsuite covering a big part of them. Luckily, for most of them the main criterion of 'correctness' is 'they don't crash'.
Just running them one by one in a loop is generally not an option, because they regularly call clear classes, close all, clc, shadow built-in functions and operators, et cetera.
So my original aim was to find a way to run a matlab script in sort of an 'isolated environment', but I didn't find a good way to do it. (Suggestions welcome, but it is not the main question.)
Since I will need to convert them all to functions anyway, I am looking for some way to do it auto-magically, or at least semi-automatically.
What I can mean semi-automatically:
Just add a line function varargout = $filename( varargin ) as the first line of the file, and end as the last one. This will at least make them runnable as functions with feval and all such functions and (more importantly) prevent them from damaging the test-runner.
Do point 1 and scan the file for referencing undeclared variables and add them as function arguments. This should be also doable, since the names of the variables are known. This will not help identifying output variables, but will still be a lot of help. For example, we could pack the whole workspace into one big output structure.
Do a runtime version of point 2. This way the 'magical converter' can actually track execution environments (workspaces) and identify which variables are implicitly used as 'input arguments' of a script, and which would be later used 'output arguments'. This option looks EXPHARD, but for a small number of calls should be not too bad in practice.
Point 1 I can implement myself using sed, as I also can get rid of all clear classes and clc, but the options 2 and 3 seem much harder. Is there anything at least remotely resembling options 2 or 3?

Why word refactor was chosen for change of program or its part?

My question is partly liguistic, but very related to programming (of almost anything, web pages or anything else).
I would like to know why word refactor was chosen for changing of program or its part, if else word probably would be more exact and better describing done change.
IDEs (for example NetBeans or Eclipse) use this word only for renaming of any part of chosen program (project), including moving of file to else place (from view of any OS it is probably only renaming).
But renaming is not about changing of factor (because it is something that is not changed when it is renamed).
Closer to meaning of word refactor (as changing of factor) is manual rewriting of any part, when rewritten part has changed behaviour (but not what program does from outer view - as is written in topic What is refactoring and what is only modifying code?).
The word "Refactoring" is derived from mathematics where you find an equivalent expression by applying factoring again. The equivalent expression does not change the final outcome but it is much easier to understand, use, or reuse.
There are many refactoring techniques and renaming is one of them. Other techniques include extract method, extract class, move method, move class, pull/push method to super/sub-class and many more.

At which lines in my MATLAB code a variable is accessed?

I am defining a variable in the beginning of my source code in MATLAB. Now I would like to know at which lines this variable effects something. In other words, I would like to see all lines in which that variable is read out. This wish does not only include all accesses in the current function, but also possible accesses in sub-functions that use this variable as an input argument. In this way, I can see in a quick way where my change of this variable takes any influence.
Is there any possibility to do so in MATLAB? A graphical marking of the corresponding lines would be nice but a command line output might be even more practical.
You may always use "Find Files" to search for a certain keyword or expression. In my R2012a/Windows version is in Edit > Find Files..., with the keyboard shortcut [CTRL] + [SHIFT] + [F].
The result will be a list of lines where the searched string is found, in all the files found in the specified folder. Please check out the options in the search dialog for more details and flexibility.
Later edit: thanks to #zinjaai, I noticed that #tc88 required that this tool should track the effect of the name of the variable inside the functions/subfunctions. I think this is:
very difficult to achieve. The problem of running trough all the possible values and branching on every possible conditional expression is... well is hard. I think is halting-problem-hard.
in 90% of the case the assumption that the output of a function is influenced by the input is true. But the input and the output are part of the same statement (assigning the result of a function) so looking for where the variable is used as argument should suffice to identify what output variables are affected..
There are perverse cases where functions will alter arguments that are handle-type (because the argument is not copied, but referenced). This side-effect will break the assumption 2, and is one of the main reasons why 1. Outlining the cases when these side effects take place is again, hard, and is better to assume that all of them are modified.
Some other cases are inherently undecidable, because they don't depend on the computer states, but on the state of the "outside world". Example: suppose one calls uigetfile. The function returns a char type when the user selects a file, and a double type for the case when the user chooses not to select a file. Obviously the two cases will be treated differently. How could you know which variables are created/modified before the user deciding?
In conclusion: I think that human intuition, plus the MATLAB Debugger (for run time), and the Find Files (for quick search where a variable is used) and depfun (for quick identification of function dependence) is way cheaper. But I would like to be wrong. :-)

would it be worth it to use inline::C to speed up math

i have been working on a perl program to process large amounts of dna. It outputs exactly what i need however it takes much longer than i would like using NYTprof i have narrowed down the major problem areas to be the loop that adds my values together. would using inline::C to do the math make my program faster or should i accept the speed and move on? is there another way to improve the speed? here is my program and an input it would run as well as an executable with the default values entered already.
It's unlikely you'll get useful help here (this included). I can see various problems with your code, and none have to do with the choice of language.
use CPAN. If you're parsing genbank, then use some an appropriate module.
You're writing assembly in Perl, and neither Perl nor you are very good at that. It's near impossible to know what's going on when you don't pass parameters to subroutines, instead relying on globals all over the place. What do #X1, #X2, #Y1, #Y2 mean?
The following might be your problem: until ($ender - $starter > $tlength) { (line 153). According to your test case, these start by being 103, 1, and 200, and it's not clear when or if they change. Depending on what's in #te, it might or might not ever get out of the loop; I just can't tell from your code.
It would help if we knew, exactly, what are the parameters to add, the in-out invariants, and what it is returning.
That's all I got.
I second the recommendation of PDL made in a comment, if it's applicable. Or the use of a CPAN module tailored to your problem (again, if applicable).
I didn't see anything that looked unambiguously like "the loop that adds my values together" in that code; please, show just the code you are considering optimizing, ideally with just enough structure around it to actually run it.
So to answer your generic question generically, yes, Inline::C can be a useful tool for optimization if you are certain your performance problem is limited to what it actually can do for you. In using it, be aware that invoking your C code from Perl or vice versa is non-trivially expensive, so you have to have enough code translated to C to minimize the transitions.