why is it useful to treat code as data in lisp [duplicate] - emacs

This question already has answers here:
In Lisp, code is data. What benefit does that provide?
(4 answers)
Closed 8 years ago.
I learn emacs lisp now and I wonder why it maybe useful to treat code as data. What a benefits of this approach. I saw one explanation as this is alternative to traditional Von Neumann architecture where exists clear separattion between data and code.
I'd like to understand a meaning for this decision, get the idea.
Thanks in advance, Nick.

You can write code that will write code for you. This can be done in two ways:
First, your program can create new code as a list and pass it to the eval function, which will evaluate the new code at runtime (however, eval is something you should not abuse -- actually, it should be used seldomly, when you really need it). You could theoretically do this in languages that do not have the homoiconicity property, but it would be a lot harder.
For example, in Scheme you may do this
(define form '(x 10))
(set! form (append 'define form)
(eval form (interaction-environment)
and the value of x will be 10 after that. This could be used, for example, in Genetic Programming
You may also define macros. A macro is a little function that reads something that looks like a function call, but is translated (expanded) into something else before the program starts evaluating forms (that is, before it is run). For example, in many Lisps or is a macro. This code,
(or a b c)
is translated into
(let ((tmp1 a))
(if tmp1
tmp1
(let ((tmp2 b))
(if tmp2
tmp2
(let ((tmp3 c))
(if tmp3
tmp3
#f))))))
You could implement or as a function, but then the function would have to evaluate all its arguments before returning. Since or is a macro, it will not necessarily evaluate all arguments.
You can read more about macros in Wikipedia and in this cool book [ beside several other places on the net, like here,
here and here for example ]. And you can read about eval in Wikipedia and in this great book.
You can also read Paul Graham's On Lisp (the book is completely free), which teaches basic Common Lisp in a somewhat fast pace and then gets into all kinds of programming techniques with macros, and later you can try Let Over Lambda (only some chapters are free).
About eval it may be interestig to read this question and its answers.

Related

Are Lisp macros just syntactic sugar? [duplicate]

This question already has answers here:
What makes Lisp macros so special?
(15 answers)
Closed 3 months ago.
I keep reading that Lisp macros are one of the most powerful features of the language. But reading over the specifications and manuals, they are just functions whose arguments are unevaluated.
Given any macro (defmacro example (arg1 ... argN) (body-forms)) I could just write (defun example (arg1 ... argN) ... (body-forms)) with the last body-form turned into a list and then call it like (eval (example 'arg1 ... 'argN)) to emulate the same behavior of the macro. If this were the case, then macros would just be syntactic sugar, but I doubt that syntactic sugar would be called a powerful language feature. What am I missing? Are there cases where I cannot carry out this procedure to emulate a macro?
I can't talk about powerful because it can be a little bit subjective, but macros are regular Lisp functions that work on Lisp data, so they are as expressive as other functions. This isn't the case with templates or generic functions in other languages that rely more on static types and are more restricted (on purpose).
In some way, yes macros are simple syntactic facilities, but you are focused in your emulation on the dynamic semantics of macros, ie. how you can run code that evaluates macros at runtime. However:
the code using eval is not equivalent to expanded code
the preprocessing/compile-time aspect of macros is not emulated
Lexical scope
Function, like +, do not inherit the lexical scope:
(let ((x 30))
(+ 3 4))
Inside the definition of +, you cannot access x. Being able to do so is what "dynamic scope" is about (more precisely, see dynamic extent, indefinite scope variables). But nowadays it is quite the exception to rely on dynamic scope. Most functions use lexical scope, and this is the case for eval too.
The eval function evaluates a form in the null lexical environment, and it never has access to the surrounding lexical bindings. As such, it behaves like any regular function.
So, in you example, calling eval on the transformed source code will not work, since arg1 to argnN will probably be unbound (it depends on what your macro does).
In order to have an equivalent form, you have to inject bindings in the transformed code, or expand at a higher level:
(defun expand-square (var)
(list '* var var))
;; instead of:
(defun foo (x) (eval (expand-square 'x))) ;; x unbound during eval
;; inject bindings
(defun foo (x) (eval `(let ((z ,x)) (expand-square z))))
;; or expand the top-level form
(eval `(defun foo (x) ,(expand-square 'x)))
Note that macros (in Common Lisp) also have access to the lexical environment through &environment parameters in their lambda-list. The use of this environment is implementation dependent, but can be used to access the declarations associated with a variable, for example.
Notice also how in the last example you evaluate the code when defining the function, and not when running it. This is the second thing about macro.
Expansion time
In order to emulate macros you could locally replace a call to a macro by a form that emulates it at runtime (using let to captures all the bindings you want to see inside the expanded code, which is tedious), but then you would miss the useful aspect of macros that is: generating code ahead of time.
The last example above shows how you can quote defun and wrap it in eval, and basically you would need to do that for all functions if you wanted to emulate the preprocessing work done by macros.
The macro system is a way to integrate this preprocessing step in the language in a way that is simple to use.
Conclusion
Macros themselves are a nice way to abstract things when functions can't. For example you can have a more human-friendly, stable syntax that hides implementation details. That's how you define pattern-matching abilities in Common Lisp that make it look like they are part of the language, without too much runtime penalty or verbosity.
They rely on simple term-rewriting functions that are integrated in the language, but you can emulate their behavior either at compile-time or runtime yourself if you want. They can be used to perform different kinds of abstraction that are usually missing or more cumbersome to do in other languages, but are also limited: they don't "understand" code by themselves, they don't give access to all the facilities of the compiler (type propagation, etc.). If you want more you can use more advanced libraries or compiler tools (see deftransform), but macros at least are portable.
Macros are not just functions whose arguments are unevaluated. Macros are functions between programming languages. In other words a macro is a function whose argument is a fragment of source code of a programming language which includes the macro, and whose value is a fragment of source code of a language which does not include the macro (or which includes it in a simpler way).
In very ancient, very rudimentary, Lisps, before people really understood what macros were, you could simulate macros with things called FEXPRs combined with EVAL. A FEXPR was simply a function which did not evaluate its arguments. This worked in such Lisps only because they were completely dynamically scoped, and the cost of it working was that compilation of such things was not possible at all. Those are two enormous costs.
In any modern Lisp, this won't work at all. You can write a toy version of FEXPRs as a macro (this may be buggy):
(defmacro deffex (fx args &body body)
(assert (every (lambda (arg)
(and (symbolp arg)
(not (member arg lambda-list-keywords))))
args)
(args) "not a simple lambda list")
`(defmacro ,fx ,args
`(let ,(mapcar (lambda (argname argval)
`(,argname ',argval))
',args (list ,#args))
,#',body)))
So now we could try to write a trivial binding construct I'll call with using this thing:
(deffex with (var val form)
(eval `(let ((,var ,val)) ,form)))
And this seems to work:
> (with a 1 a)
1
Of course, we're paying the cost that no code which uses this construct can ever be compiled so all our programs will be extremely slow, but perhaps that is a cost we're willing to accept (it's not, but never mind).
Except, of course, it doesn't work, at all:
> (with a 1
(with b 2
(+ a b)))
Error: The variable a is unbound.
Oh dear.
Why doesn't it work? It doesn't work because Common Lisp is lexically scoped, and eval is a function: it can't see the lexical bindings.
So not only does this kind of approach prevent compilation in a modern Lisp, it doesn't work at all.
People often, at this point, suggest some kind of kludge solution which would allow eval to be able to see lexical bindings. The cost of such a solution is that all the lexical bindings need to exist in compiled code: no variable can ever be compiled away, not even its name. That's essentially saying that no good compilers can ever be used, even for the small part of your programs you can compile at all in a language which makes extensive use of macros like CL. For instance, if you ever use defun you're not going to be able to compile the code in its body. People do use defun occasionally, I think.
So this approach simply won't work: it worked by happenstance in very old Lisps but it can't work, even at the huge cost of preventing compilation, in any modern Lisp.
More to the point this approach obfuscates the understanding of what macros are: as I said at the start, macros are functions between programming languages, and understanding that is critical. When you are designing macros you are implementing a new programming language.

Ordering of needle / haystack in Lisp functions

While learning Lisp, I've seen that if there are two parameters to a function, where one is a single element or a subset (needle), and the other is a list (haystack), the element or subset always comes first.
Examples:
(member 3 '(3 1 4 1 5))
(assoc 'jane '((jane doe)
(john doe)))
(subsetp '(a e) '(a e i o u))
To me, it seems as if there was a rule in Lisp that functions should follow this guidance: Part first, entire thing second.
Is this finding actually based on a guideline in Lisp, or is it accidentally?
Functions like member and assoc are at least from 1960.
I would simply expect that it followed mathematical notation, for example in set theory:
e ∈ m
Since Lisp uses prefix notation, the predicate/function/operator comes first, the element second and the set is third:
(∈ e m)
John McCarthy had a Ph.D. in Mathematics.
Generally it is also more useful in Common Lisp to have set-like argument last:
(defun find-symbol (name package) ...)
The actual definition in Common Lisp is:
(defun find-symbol (name &optional (package *package*)) ...)
This allows us to use the current package as a useful default.
Lets see. The first McCarthy LISP from 1960 had the list sometimes as the first argument. See page 123 in this LISP manual. E.g.
;; 1960 maplist
(defun maplist (list function)
...)
Now this is perhaps because this function was one of the first higher order functions that were made. In fact it predated the first implementation as it was in the first Lisp paper. In the same manual on page 125 you'll find sassoc and it looks very much like assoc today:
(defun sassoc (needle haystack default-function)
...)
Both of these look the same in the next version 1.5 of the language. (See page 63 for maplist and 60 for sassoc)
From here to Common Lisp there are divergent paths that joins again. A lot of new ideas came about but there has to be a reason to break compatibility to actually do it. I can think of one reason and that is support for multiple lists. In Common Lisp maplist is:
(defun maplist (function &rest lists+)
...)
A quick search in the CLHS for common argument names in "wrong" order gave me fill, map-into, and sort. There might be more.
Peter Norvigs style guide say to follow conventions but not more detailed than that. When reading Scheme SRFIs they often mention defacto implementations around and what Common Lisp has as solution before suggesting something similar as a standard. I do the same when choosing how to implement things.

How do I best use common-lisp in elisp (if at all)?

Can someone please explain what the specific issues are with using the cl package in elisp? As a new coder in emacs I feel as though I'm making a mistake whenever I reach for the (require 'cl) option. I have read and understood the byte-compilation issue with the cl package. I have looked at the old arguments and have no wish to revive them. I am also not looking for any generalist comment on whether common-lisp is better than x brand lisp.
What I would like to know is practically how to use common-lisp so that any elisp I write will have a good chance of being accepted by the majority of elisp coders. Specifically, should I avoid using common lisp entirely, or are there some parts of the language that are acceptable to everyone and some parts where a good majority of coders would snigger and scoff at?
Without wishing to limit the breadth of the answer, is this:
(mapcar (lambda(x) (* x x)) '(1 2 3))
much more acceptable than this:
(require 'cl)
(loop for el in '(1 2 3) collect (* el el))
While using a lot of third-party libraries and writing some of my own eLisp code, I never encountered the situation when using CL package resulted in a name conflict. So, I'd be tempted to say that the argument against using CL is nothing but puritanism (in the original sense of the word, not meaning the religious side of things).
But, if you are planning on a very long time support and you want to have some sort of a backup, here's what I would do (but I'm not doing that myself, because fixing things once they are broken seems to be a better tactic). For the functions in CL package that you are using, create a special file, where you defalias all of them to have a cl- prefix. So, for example, instead of having a (position ...) you would have (cl-position ...). Theoretically will save you the problem of forward compatibility. However functions don't get removed instantly, you'll get a warning ahead of time of them being deprecated, and will have a lot of time to update. Up to you, really.
Loop macro in Common Lisp is a controversy all by itself, it is not a typical construct for the language and that's why, for example, the iterate library exists. It also requires that you learn "the loop mini-language" to use it well, which is sort of a small domain-specific language, and there's really no requirement that this kind of construct use one. BUT, loop has its strong sides. List processing functions such as mapcar or reduce will serve you well in more trivial cases, like the one you have in your example, but in the less trivial cases loop is going to be a better and also less verbose way of doing the same thing.
Have you read the macros section of the manual? Using macros such as your loop example is perfectly okay.
But you would use eval-when-compile around the require.
In fact (eval-when-compile (require 'cl)) appears 66 times just in the root lisp folder in my Emacs.
Unless you plan to integrate your code in Emacs use the CL package, and put this snippet in your .emacs to disable the warnings.
(byte-compile-disable-warning 'cl-functions)
Note: You can find some advices on elisp programming on nicferrier's blog.

Why the function/macro dichotomy?

Why is the function/macro dichotomy present in Common Lisp?
What are the logical problems in allowing the same name representing both a macro (taking precedence when found in function position in compile/eval) and a function (usable for example with mapcar)?
For example having second defined both as a macro and as a function would allow to use
(setf (second x) 42)
and
(mapcar #'second L)
without having to create any setf trickery.
Of course it's clear that macros can do more than functions and so the analogy cannot be complete (and I don't think of course that every macro shold also be a function) but why forbidding it by making both sharing a single namespace when it could be potentially useful?
I hope I'm not offending anyone, but I don't really find a "Why doing that?" response really pertinent... I'm looking for why this is a bad idea. Imposing an arbitrary limitation because no good use is known is IMO somewhat arrogant (sort of assumes perfect foresight).
Or are there practical problems in allowing it?
Macros and Functions are two very different things:
macros are using source (!!!) code and are generating new source (!!!) code
functions are parameterized blocks of code.
Now we can look at this from several angles, for example:
a) how do we design a language where functions and macros are clearly identifiable and are looking different in our source code, so we (the human) can easily see what is what?
or
b) how do we blend macros and functions in a way that the result is most useful and has the most useful rules controlling its behavior? For the user it should not make a difference to use a macro or a function.
We really need to convince ourselves that b) is the way to go and we would like to use a language where macros and functions usage looks the same and is working according to similar principles. Take ships and cars. They look different, their use case is mostly different, they transport people - should we now make sure that the traffic rules for them are mostly identical, should we make them different or should we design the rules for their special usage?
For functions we have problems like: defining a function, scope of functions, life-time of functions, passing functions around, returning functions, calling functions, shadowing of functions, extension of functions, removing the definition a function, compilation and interpretation of functions, ...
If we would make macros appear mostly similar to functions, we need to address most or all above issues for them.
In your example you mention a SETF form. SETF is a macro that analyses the enclosed form at macro expansion time and generates code for a setter. It has little to do with SECOND being a macro or not. Having SECOND being a macro would not help at all in this situation.
So, what is a problem example?
(defmacro foo (a b)
(if (and (numberp b) (zerop b))
a
`(- ,a ,b)))
(defun bar (x list)
(mapcar #'foo (list x x x x) '(1 2 3 4)))
Now what should that do? Intuitively it looks easy: map FOO over the lists. But it isn't. When Common Lisp was designed, I would guess, it was not clear what that should do and how it should work. If FOO is a function, then it was clear: Common Lisp took the ideas from Scheme behind lexically scoped first-class functions and integrated it into the language.
But first-class macros? After the design of Common Lisp a bunch of research went into this problem and investigated it. But at the time of Common Lisp's design, there was no wide-spread use of first-class macros and no experience with design approaches. Common Lisp is standardizing on what was known at the time and what the language users thought necessary to develop (the object-system CLOS is kind of novel, based on earlier experience with similar object-systems) software with. Common Lisp was not designed to have the theoretically most pleasing Lisp dialect - it was designed to have a powerful Lisp which allows the efficient implementation of software.
We could work around this and say, passing macros is not possible. The developer would have to provide a function under the same name, which we pass around.
But then (funcall #'foo 1 2) and (foo 1 2) would invoke different machineries? In the first case the function fooand in the second case we use the macro foo to generate code for us? Really? Do we (as human programmers) want this? I think not - it looks like it makes programming much more complicated.
From a pragmatic point of view: Macros and the mechanism behind it are already complicated enough that most programmers have difficulties dealing with it in real code. They make debugging and code understanding much harder for a human. On the surface a macro makes code easier to read, but the price is the need to understand the code expansion process and result.
Finding a way to further integrate macros into the language design is not an easy task.
readscheme.org has some pointers to Macro-related research wrt. Scheme: Macros
What about Common Lisp
Common Lisp provides functions which can be first-class (stored, passed around, ...) and lexically scoped naming for them (DEFUN, FLET, LABELS, FUNCTION, LAMBDA).
Common Lisp provides global macros (DEFMACRO) and local macros (MACROLET).
Common Lisp provides global compiler macros (DEFINE-COMPILER-MACRO).
With compiler macros it is possible to have a function or macro for a symbol AND a compiler macro. The Lisp system can decide to prefer the compiler macro over the macro or function. It can also ignore them entirely. This mechanism is mostly used for the user to program specific optimizations. Thus it does not solve any macro related problems, but provides a pragmatic way to program global optimizations.
I think that Common Lisp's two namespaces (functions and values), rather than three (macros, functions, and values), is a historical contingency.
Early Lisps (in the 1960s) represented functions and values in different ways: values as bindings on the runtime stack, and functions as properties attached to symbols in the symbol table. This difference in implementation led to the specification of two namespaces when Common Lisp was standardized in the 1980s. See Richard Gabriel's paper Technical Issues of Separation in Function Cells and Value Cells for an explanation of this decision.
Macros (and their ancestors, FEXPRs, functions which do not evaluate their arguments) were stored in many Lisp implementations in the symbol table, in the same way as functions. It would have been inconvenient for these implementations if a third namespace (for macros) had been specified, and would have caused backwards-compatibility problems for many programs.
See Kent Pitman's paper Special Forms in Lisp for more about the history of FEXPRs, macros and other special forms.
(Note: Kent Pitman's website is not working for me, so I've linked to the papers via archive.org.)
Because then the exact same name would represent two different objects, depending on the context. It makes the programme unnecessarily difficult to understand.
My TXR Lisp dialect allows a symbol to be simultaneously a macro and function. Moreover, certain special operators are also backed by functions.
I put a bit of thought into the design, and haven't run into any problems. It works very well and is conceptually clean.
Common Lisp is the way it is for historic reasons.
Here is a brief rundown of the system:
When a global macro is defined for symbol X with defmacro, the symbol X does not become fboundp. Rather, what becomes fboundp is the compound function name (macro X).
The name (macro X) is then known to symbol-function, trace and in other situations. (symbol-function '(macro X)) retrieves the two-argument expander function which takes the form and an environment.
It's possible to write a macro using (defun (macro X) (form env) ...).
There are no compiler macros; regular macros do the job of compiler macros.
A regular macro can return the unexpanded form to indicate that it's declining to expand. If a lexical macrolet declines to expand, the opportunity goes to a more lexically outer macrolet, and so on up to the global defmacro. If the global defmacro declines to expand, the form is considered expanded, and thus is necessarily either a function call or special form.
If we have both a function and macro called X, we can call the function definition using (call (fun X) ...) or (call 'X ...), or else using the Lisp-1-style dwim evaluator (dwim X ...) that is almost always used through its [] syntactic sugar as [X ...].
For a sort of completeness, the functions mboundp, mmakunbound and symbol-macro are provided, which are macro analogs of fboundp, fmakunbound and symbol-function.
The special operators or, and, if and some others have function definitions also, so that code like [mapcar or '(nil 2 t) '(1 0 3)] -> (1 2 t) is possible.
Example: apply constant folding to sqrt:
1> (sqrt 4.0)
2.0
2> (defmacro sqrt (x :env e :form f)
(if (constantp x e)
(sqrt x)
f))
** warning: (expr-2:1) defmacro: defining sqrt, which is also a built-in defun
sqrt
3> (sqrt 4.0)
2.0
4> (macroexpand '(sqrt 4.0))
2.0
5> (macroexpand '(sqrt x))
(sqrt x)
However, no, (set (second x) 42) is not implemented via a macro definition for second. That would not work very well. The main reason is that it would be too much of a burden. The programmer may want to have, for a given function, a macro definition which has nothing to do with implementing assignment semantics!
Moreover, if (second x) implements place semantics, what happens when it is not embedded in an assignment operation, such that the semantics is not required at all? Basically, to hit all the requirements would require concocting a scheme for writing macros whose complexity would equal or exceed that of existing logic for handling places.
TXR Lisp does, in fact, feature a special kind of macro called a "place macro". A form is only recognized as a place macro invocation when it is used as a place. However, place macros do not implement place semantics themselves; they just do a straightforward rewrite. Place macros must expand down to a form that is recognized as a place.
Example: specify that (foo x), when used as a place, behaves as (car x):
1> (define-place-macro foo (x) ^(car ,x))
foo
2> (macroexpand '(foo a)) ;; not a macro!
(foo a)
3> (macroexpand '(set (foo a) 42)) ;; just a place macro
(sys:rplaca a 42)
If foo expanded to something which is not a place, things would fail:
4> (define-place-macro foo (x) ^(bar ,x))
foo
5> (macroexpand '(foo a))
(foo a)
6> (macroexpand '(set (foo a) 42))
** (bar a) is not an assignable place

Examples of what Lisp's macros can be used for

I've heard that Lisp's macro system is very powerful. However, I find it difficult to find some practical examples of what they can be used for; things that would be difficult to achieve without them.
Can anyone give some examples?
Source code transformations. All kinds. Examples:
New control flow statements: You need a WHILE statement? Your language doesn't have one? Why wait for the benevolent dictator to maybe add one next year. Write it yourself. In five minutes.
Shorter code: You need twenty class declarations that almost look identical - only a limited amount of places are different. Write a macro form that takes the differences as parameter and generates the source code for you. Want to change it later? Change the macro in one place.
Replacements in the source tree: You want to add code into the source tree? A variable really should be a function call? Wrap a macro around the code that 'walks' the source and changes the places where it finds the variable.
Postfix syntax: You want to write your code in postfix form? Use a macro that rewrites the code to the normal form (prefix in Lisp).
Compile-time effects: You need to run some code in the compiler environment to inform the development environment about definitions? Macros can generate code that runs at compile time.
Code simplifications/optimizations at compile-time: You want to simplify some code at compile time? Use a macro that does the simplification - that way you can shift work from runtime to compile time, based on the source forms.
Code generation from descriptions/configurations: You need to write a complex mix of classes. For example your window has a class, subpanes have classes, there are space constraints between panes, you have a command loop, a menu and a whole bunch of other things. Write a macro that captures the description of your window and its components and creates the classes and the commands that drive the application - from the description.
Syntax improvements: Some language syntax looks not very convenient? Write a macro that makes it more convenient for you, the application writer.
Domain specific languages: You need a language that is nearer to the domain of your application? Create the necessary language forms with a bunch of macros.
Meta-linguistic abstraction
The basic idea: everything that is on the linguistic level (new forms, new syntax, form transformations, simplification, IDE support, ...) can now be programmed by the developer piece by piece - no separate macro processing stage.
Pick any "code generation tool". Read their examples. That's what it can do.
Except you don't need to use a different programming language, put any macro-expansion code where the macro is used, run a separate command to build, or have extra text files sitting on your hard disk that are only of value to your compiler.
For example, I believe reading the Cog example should be enough to make any Lisp programmer cry.
Anything you'd normally want to have done in a pre-processor?
One macro I wrote, is for defining state-machines for driving game objects. It's easier to read the code (using the macro) than it is to read the generated code:
(def-ai ray-ai
(ground
(let* ((o (object))
(r (range o)))
(loop for p in *players*
if (line-of-sight-p o p r)
do (progn
(setf (target o) p)
(transit seek)))))
(seek
(let* ((o (object))
(target (target o))
(r (range o))
(losp (line-of-sight-p o target r)))
(when losp
(let ((dir (find-direction o target)))
(setf (movement o) (object-speed o dir))))
(unless losp
(transit ground)))))
Than it is to read:
(progn
(defclass ray-ai (ai) nil (:default-initargs :current 'ground))
(defmethod gen-act ((ai ray-ai) (state (eql 'ground)))
(macrolet ((transit (state)
(list 'setf (list 'current 'ai) (list 'quote state))))
(flet ((object ()
(object ai)))
(let* ((o (object)) (r (range o)))
(loop for p in *players*
if (line-of-sight-p o p r)
do (progn (setf (target o) p) (transit seek)))))))
(defmethod gen-act ((ai ray-ai) (state (eql 'seek)))
(macrolet ((transit (state)
(list 'setf (list 'current 'ai) (list 'quote state))))
(flet ((object ()
(object ai)))
(let* ((o (object))
(target (target o))
(r (range o))
(losp (line-of-sight-p o target r)))
(when losp
(let ((dir (find-direction o target)))
(setf (movement o) (object-speed o dir))))
(unless losp (transit ground)))))))
By encapsulating the whole state-machine generation in a macro, I can also ensure that I only refer to defined states and warn if that is not the case.
With macros you can define your own syntax, thus you extend Lisp and make it
suited for the programs you write.
Check out the, very good, online book Practical Common Lisp, for practical examples.
7. Macros: Standard Control Constructs
8. Macros: Defining Your Own
Besides extending the language's syntax to allow you to express yourself more clearly, it also gives you control over evaluation. Try writing your own if in your language of choice so that you can actually write my_if something my_then print "success" my_else print "failure" and not have both print statements get evaluated. In any strict language without a sufficiently powerful macro system, this is impossible. No Common Lisp programmers would find the task too challenging, though. Ditto for for-loops, foreach loops, etc. You can't express these things in C because they require special evaluation semantics (people actually tried to introduce foreach into Objective-C, but it didn't work well), but they are almost trivial in Common Lisp because of its macros.
R, the standard statistics programming language, has macros (R manual, chapter 6). You can use this to implement the function lm(), which analyzes data based on a model that you specify as code.
Here's how it works: lm(Y ~ aX + b, data) will try to find a and b parameters that best fit your data. The cool part is, you can substitute any linear equation for aX + b and it will still work. It's a brilliant feature to make statistics computation easier, and it only works so elegantly because lm() can analyze the equation it's given, which is exactly what Lisp macros do.
Just a guess -- Domain Specific Languages.
Macros are essential in providing access to language features. For instance, in TXR Lisp, I have a single function called sys:capture-cont for capturing a delimited continuation. But this is awkward to use by itself. So there are macros wrapped around it, such as suspend, or obtain and yield which provide alternative models for resumable, suspended execution. They are implemented here.
Another example is the complex macro defstruct which provides syntax for defining a structure type. It compiles its arguments into lambda-s and other material which is passed to the function make-struct-type. If programs used make-struct-type directly for defining OOP structures, they would be ugly:
1> (macroexpand '(defstruct foo bar x y (z 9) (:init (self) (setf self.x 42))))
(sys:make-struct-type 'foo 'bar '()
'(x y z) ()
(lambda (#:g0101)
(let ((#:g0102 (struct-type #:g0101)))
(unless (static-slot-p #:g0102 'z)
(slotset #:g0101 'z
9)))
(let ((self #:g0101))
(setf (qref self x)
42)))
())
Yikes! There is a lot going on that has to be right. For instance, we don't just stick a 9 into slot z because (due to inheritance) we could actually be the base structure of a derived structure, and in the derived structure, z could be a static slot (shared by instances). We would be clobbering the value set up for z in the derived class.
In ANSI Common Lisp, a nice example of a macro is loop, which provides an entire sub-language for parallel iteration. A single loop invocation can express an entire complicated algorithm.
Macros let us think independently about the syntax we would like in a language feature, and the underlying functions or special operators required to implement it. Whatever choices we make in these two, macros will bridge them for us. I don't have to worry that make-struct is ugly to use, so I can focus on the technical aspects; I know that the macro can look the same regardless of how I make various trade-offs. I made the design decision that all struct initialization is going to be done by some functions registered to the type. Okay, that means that my macro has to take all the initializations in the slot-defining syntax, and compile the anonymous functions, where the slot initialization is done by code generated in the bodies.
Macros are compilers for bits of syntax, for which functions and special operators are the target language.
Sometimes people (non-Lisp people, usually) criticize macros in this way: macros don't add any capabilities, only syntactic sugar.
Firstly, syntactic sugar is a capability.
Secondly, you also have to consider macros from a "total hacker perspective": combining macros with implementation-level work. If I'm adding features to a Lisp dialect, such as structures or continuations, I am actually extending the power. The involvement of macros in that enterprise is essential. Even though macros aren't the source of the new power (it doesn't emanate from the macros themselves), they help tame and harness it, giving it expression.
If you don't have sys:capture-cont, you can't just hack up its behavior with a suspend macro. But if you don't have macros, then you have to do something awfully inconvenient to provide access to a new feature that isn't a library function, namely hard-coding some new phrase structure rules into a parser.