Generate random composite key - perl

I have an array of strings, and an array of dates.
I need to use these as seeds to insert a composite key into a sqlite table.
So far I am doing this:
For dates (contains dates from now to past, user selects number of days)
For name (a unique random subset of a master array)
Insert
Is there a better way of doing this (there always seem to be in perl)

use "rand($#array_name)" function, to get random index of the array you have, then just use that value, which will be different at each time.

Related

Is there any way for Access 2016 to sort the numbers that are part of a "text" data type formatted field as though they are numeric values?

I am working on a database that (hopefully) will end up using a primary key with both numbers and letters in the values to track lots of agricultural product. Due to the way in which the weighing of product takes place at more than one facility, I have no other option but to maintain the same base number but use letters in addition to this base number to denote split portions of each lot of product. The problem is, after I create record number 99, the number 100 suddenly floats up and underneath 10. This makes it difficult to maintain consistency and forces me to replace this alphanumeric lot ID with a strictly numeric value in order to keep it sorted (which I use "autonumber" as the data type). Either way, I need the alphanumeric lot ID, and so having 2 ID's for the same lot can be confusing for anyone inputting values into the form. Is there a way around this that I am just not seeing?
If you're using query as a data source then you may try to sort it by string converted to number, something like
SELECT id, field1, field2, ..
ORDER BY CLng(YourAlphaNumericField)
Edit: you may also try Val function instead of CLng - it should not fail on non-numeric input
Why not properly format your key before saving ? e.g: "0000099". You will avoid a costly conversion later.
Alternatively, you could use 2 fields as the composite PK. One with the Number (as Long) and one with the Location (as String).

100 columns vs Array of length 100

I have a table with 100+ values corresponding to each row, so I'm exploring different ways to store them.
Without any indexes, would I lose anything if I store these 100 values in an integer[] column in postgresql? As compared to storing them in separate columns.
Plus, since we can add indexes to array elemnets,
CREATE INDEX test_index on test ((foo[1]));
Would there be a performance difference queries using such an index as compared to regular index on a column?
As far as I've read, this performance difference would come into picture in arrays with variable length elements; but I'm not sure about fixed length ones.
Don't go for the lazy way.
If you need to store 100 and more values as array, it is ok, if it has sense has array for your application, your data.
If you need to query for a specific element of the array, then this design is not good, regardless of performances, and you must use columns. This will help you in the moment you must delete a "column" in the middle or redesign it.
Anyway, as wrote by Frank in comments, if values are all same type, consider to model them to another table (if also the meaning is the same).

Postgres hstore for time series

I am new to postgres and am experimenting with the hstore extension.Looking for some guidance. I need to support basic reporting on timeseries data for various products that we sell. I have a large amount data in the format "Timestamp, Value" for each product. This data is available in a csv fle for each product.
I am thinking of using hstore to store this data in the key value format. Assuming that all the timeseries data for a single product can be stored in a single hstore object. I need to be able to query this data by specific times, say what was the value of a product at a given time? Also need to run simple queries like retrieving the times where the product costed more than $100.
I'm planning to have a table with a product id column and an hstore column. But I am not very clear on how to make this work:
The hstore column needs to be loaded from thousands of timestamp,value records that exist in a csv. The hstore should be appended whenever we get a new csv.
The table needs to store the productId and corresponding Timeseries data.
Can you please advise if using hstore would be helpful ? If yes then how can I load data from csv as explained above. Also, if there could be any impact on the performance on inserts/updates in the hstore, as data grows please share your experiences.
I do think you should start with a simple, normalised schema first, especially since you are new to PostgreSQL. Something like:
CREATE TABLE product_data
(
product TEXT, -- I'm making an assumption about the types of your columns
time TIMESTAMP,
value DOUBLE PRECISION,
PRIMARY KEY (product, time);
);
I would definitely keep hstore and similar options in mind, if and when your data becomes large enough that efficiency is more important and simplicity. But note that all options have an efficiency tradeoff.
Do you know how much data you're going to support? Number of products, number of distinct timestamps for each product?
What other queries do you want to run? A query for the times where a single product cost more than $100 would benefit from an index on (product, value), if the product has many distinct timestamps.
Other options
hstore is most useful if you want to store a table set of arbitrary key-value pairs in a row. You could use it here, with a row for each product, and each distinct timestamp for that product being a key in the product's table. The downsides are that keys and values in hstore are text, whereas your keys are timestamps, and your values are numbers of some kind. So there will be a certain reduction in type checking, and a certain increase in type casting cost required. Another possible downside is that some queries on the hstore might not use indexes very efficiently. The above table can use simple btree indexes for range queries (say you want to pull out the values between two dates for a product). But hstore indexes are much more limited; you can use a gist or gin index on an hstore column to find all the rows that feature a certain key.
Another option (which I've played with and use experimentally for some of my databases) is arrays. Basically, each product will have an array of values, and each timestamp maps to an index in the array. This is easy if the timestamps are perfectly regular. For example, if all your products had a value every hour for every day, you could use a table like this:
CREATE TABLE product_data
(
product TEXT,
day DATE,
values DOUBLE PRECISION[], -- An array from 0 to 23.
PRIMARY KEY (product, day);
);
You can construct views and indexes to make querying this table moderate easy. (I wrote a blog post on this technique at http://ejrh.wordpress.com/2011/03/20/vector-denormalisation-in-postgresql/.)
But my advice is still: start with a simple table, then explore ways to improve efficiency when you know you're going to need them.

How to query Cassandra by date range

I have a Cassandra ColumnFamily (0.6.4) that will have new entries from users. I'd like to query Cassandra for those new entries so that I can process that data in another system.
My sense was that I could use a TimeUUIDType as the key for my entry, and then query on a KeyRange that starts either with "" as the startKey, or whatever the lastStartKey was. Is this the correct method?
How does get_range_slice actually create a range? Doesn't it have to know the data type of the key? There's no declaration of the data type of the key anywhere. In the storage_conf.xml file, you declare the type of the columns, but not of the keys. Is the key assumed to be of the same type as the columns? Or does it do some magic sniffing to guess?
I've also seen reference implementations where people store TimeUUIDType in columns. However, this seems to have scale issues as this particular key would then become "hot" since every change would have to update it.
Any pointers in this case would be appreciated.
When sorting data only the column-keys are important. The data stored is of no consequence neither is the auto-generated timestamp. The CompareWith attribute is important here. If you set CompareWith as UTF8Type then the keys will be interpreted as UTF8Types. If you set the CompareWith as TimeUUIDType then the keys are automatically interpreted as timestamps. You do not have to specify the data type. Look at the SlicePredicate and SliceRange definitions on this page http://wiki.apache.org/cassandra/API This is a good place to start. Also, you might find this article useful http://www.sodeso.nl/?p=80 In the third part or so he talks about slice ranging his queries and so on.
Doug,
Writing to a single column family can sometimes create a hot spot if you are using an Order-Preserving Partitioner, but not if you are using the default Random Partitioner (unless a subset of users create vastly more data than all other users!).
If you sorted your rows by time (using an Order-Preserving Partitioner) then you are probably even more likely to create hotspots, since you will be adding rows sequentially and a single node will be responsible for each range of the keyspace.
Columns and Keys can be of any type, since the row key is just the first column.
Virtually, the cluster is a circular hash key ring, and keys get hashed by the partitioner to get distributed around the cluster.
Beware of using dates as row keys however, since even the randomization of the default randompartitioner is limited and you could end up cluttering your data.
What's more, if that date is changing, you would have to delete the previous row since you can only do inserts in C*.
Here is what we know :
A slice range is a range of columns in a row with a start value and an end value, this is used mostly for wide rows as columns are ordered. Known column names defined in the CF are indexed however so they can be retrieved specifying names.
A key slice, is a key associated with the sliced column range as returned by Cassandra
The equivalent of a where clause uses secondary indexes, you may use inequality operators there, however there must be at least ONE equals clause in your statement (also see https://issues.apache.org/jira/browse/CASSANDRA-1599).
Using a key range is ineffective with a Random Partitionner as the MD5 hash of your key doesn't keep lexical ordering.
What you want to use is a Column Family based index using a Wide Row :
CompositeType(TimeUUID | UserID)
In order for this not to become hot, add a first meaningful key ("shard key") that would split the data accross nodes such as the user type or the region.
Having more data than necessary in Cassandra is not a problem, it's how it is designed, so what you must ask yourself is "what do I need to query" and then design a Column Family for it rather than trying to fit everything in one CF like you'd do in an RDBMS.

DB2 Auto generated Column / GENERATED ALWAYS pros and cons over sequence

Earlier we were using 'GENERATED ALWAYS' for generating the values for a primary key. But now it is suggested that we should, instead of using 'GENERATED ALWAYS' , use sequence for populating the value of primary key. What do you think can be the reason of this change? It this just a matter of choice?
Earlier Code:
CREATE TABLE SCH.TAB1
(TAB_P INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1, NO CACHE),
.
.
);
Now it is
CREATE TABLE SCH.TAB1
(TAB_P INTEGER ),
.
.
);
now while inserting, generate the value for TAB_P via sequence.
I tend to use identity columns more than sequences, but I'll compare the two for you.
Sequences can generate numbers for any purpose, while an identity column is strictly attached to a column in a table.
Since a sequence is an independent object, it can generate numbers for multiple tables (or anything else), and is not affected when any table is dropped. When a table with a identity column is dropped, there is no memory of what value was last assigned by that identity column.
A table can have only one identity column, so if you want to want to record multiple sequential numbers into different columns in the same table, sequence objects can handle that.
The most common requirement for a sequential number generator in a database is to assign a technical key to a row, which is handled well by an identity column. For more complicated number generation needs, a sequence object offers more flexibility.
This might probably be to handle ids in case there are lots of deletes on the table.
For eg: In case of identity, if your ids are
1
2
3
Now if you delete record 3, your table will have
1
2
And then if your insert a new record, the ids will be
1
2
4
As opposed to this, if you are not using an identity column and are generating the id using code, then after delete for the new insert you can calculate id as max(id) + 1, so the ids will be in order
1
2
3
I can't think of any other reason, why an identity column should not be used.
Heres something I found on the publib site:
Comparing IDENTITY columns and sequences
While there are similarities between IDENTITY columns and sequences, there are also differences. The characteristics of each can be used when designing your database and applications.
An identity column has the following characteristics:
An identity column can be defined as
part of a table only when the table
is created. Once a table is created,
you cannot alter it to add an
identity column. (However, existing
identity column characteristics might
be altered.)
An identity column
automatically generates values for a
single table.
When an identity
column is defined as GENERATED
ALWAYS, the values used are always
generated by the database manager.
Applications are not allowed to
provide their own values during the
modification of the contents of the
table.
A sequence object has the following characteristics:
A sequence object is a database
object that is not tied to any one
table.
A sequence object generates
sequential values that can be used in
any SQL or XQuery statement.
Since a sequence object can be used
by any application, there are two
expressions used to control the
retrieval of the next value in the
specified sequence and the value
generated previous to the statement
being executed. The PREVIOUS VALUE
expression returns the most recently
generated value for the specified
sequence for a previous statement
within the current session. The NEXT
VALUE expression returns the next
value for the specified sequence. The
use of these expressions allows the
same value to be used across several
SQL and XQuery statements within
several tables.
While these are not all of the characteristics of these two items, these characteristics will assist you in determining which to use depending on your database design and the applications using the database.
I don't know why anyone would EVER use an identity column rather than a sequence.
Sequences accomplish the same thing and are far more straight forward. Identity columns are much more of a pain especially when you want to do unloads and loads of the data to other environments. I not going to go into all the differences as that information can be found in the manuals but I can tell you that the DBA's have to almost always get involved anytime a user wants to migrate data from one environment to another when a table with an identity is involved because it can get confusing for the users. We have no issues when a sequence is used. We allow the users to update any schema objects so they can alter their sequences if they need to.