I am trying to minimize sum((A-r*B).^2) in Matlab where A and B are matrices and r is the scalar I am manipulating. I tried the following code:
f = #(r) sum((A-r*B).^2);
Answer = fminbnd(f,lowrange,highrange);
But I get an error.
If A and B are matrices, then sum((A - r*B).^2) will not give you a single value. This will give you an array of values. If the input to sum is a matrix, the output of sum will give you an array where each element is the sum along the rows for each column in your matrix.
The function you are specifying to fminbnd must evaluate to a single value. I'm assuming you want to determine the sum of squared differences in your function, and so you need to wrap your sum with another sum. As such, try this instead:
f = #(r) sum(sum((A-r*B).^2));
Answer = fminbnd(f,lowrange,highrange);
The function f will now find the difference between matrices A and B which is weighted by r, square these differences and then add up all of these differences together.
Try that and see if it works.
If you don't need to impose limits on the possible values of the optimized scalar r, then you should be able to solve this equation directly without searching for the minimum. If A and B are vectors, use:
ropt=(B'*B)^(-1)*B'*A;
If A and B are arrays and you want to minimize the sum of squared residuals of all elements of the arrays then I believe the following will work (same formula, but convert A and B to vectors).
ropt=(B(:)'*B(:))^(-1)*B(:)'*A(:);
Examples:
b=[1;2;3]
a=2*b;
ropt=(b'*b)^(-1)*b'*a
returns ropt=2.0000, as desired
Similarly, for a matrix:
b=magic(3);
a=2*b;
ropt=(b(:)'*b(:))^(-1)*b(:)'*a(:)
also returns ropt=2.0000. This should work fine even if there isn't a perfect solution, as there is in the examples above.
Related
I am working on something and I haven't found any solution, maybe I didn't know how to correctly search for it...
I have two arrays of experimental data (x and y). x is a list of certain energies (512 values from 0 to 100 kev) and I want to fit them to a function which returns a vector of values of y for every x in the list (the energies are always the same, 512 certain values). This is because my function model contains several matrix and other functions.
So, I can't evaluate my function as f(x,a,b,c...) (with a,b,c the parameters to fit) and expect a single scalar, but I have to evaluate f(a,b,c...), and it returns a vector of y(x1),y(x2)...
Now, I want to fit my data to my model. But lsqcurvefit needs a function of the form f(x), I suppose that it evaluates every f(x). I could write my function so that every time it is called it evaluates the vector result, and then returns y for the given x, but it would be quite inefficient... And I'm sure there must be another way.
Any idea?
Maybe you can do an fminsearch on the sum of square errors? It is best to put all fitting parameters into one vector. Here I call it p.
f = #(x,p) (p(3)+p(1)*x.^p(2)).^(1/p(4); %example function with four free parameters
sqerr = #(x,y,p) sum((y-f(x,p)).^2); %sum of squared errors
p = [1,1,1,1]; %four starting conditions
p = fminsearch(#(p) sqerr(x,y,p),p); %fit
Then you can find your y(x_i) values by calling the function with the fitted paramters
f(x,p)
I'm trying to implement a 1 dimensional DFT without using Matlab built-in functions such as fft(). This is my code
function [Xk] = dft1(xn)
N=length(xn);
n = 0:1:N-1; % row vector for n
k = 0:1:N-1; % row vecor for k
WN = exp(-1j*2*pi/N); % Twiddle factor (w)
nk = n'*k; % creates a N by N matrix of nk values
WNnk = WN .^ nk; % DFT matrix
Xk = (WNnk*xn );
when i run the code after using the following commands:
I = imread('sample.jpg')
R = dft1(I)
I get this particular error:
Error using *
MTIMES is not fully supported for
integer classes. At least one input
must be scalar.
To compute elementwise TIMES, use
TIMES (.*) instead.
Can someone please help me to figure out how to solve this problem
Note: I am still in the very beginning level of learning Matlab
thank you very much
You just need to cast the data to double, then run your code again. Basically what the error is saying is that you are trying to mix classes of data together when applying a matrix multiplication between two variable. Specifically, the numerical vectors and matrices you define in dft1 are all of a double type, yet your image is probably of type uint8 when you read this in through imread. This is why you're getting that integer error because uint8 is an integer class and you are trying to perform matrix multiplication with this data type with those of a double data type. Bear in mind that you can mix data types, so long as one number is a single number / scalar. This is also what the error is alluding to. Matrix multiplication of varaibles that are not floating point (double, single) is not supported in MATLAB so you need to make sure that your image data and your DFT matrices are the same type before applying your algorithm.
As such, simply do:
I = imread('sample.jpg');
R = dft1(double(I));
Minor Note
This code is quite clever, and it (by default) applies the 1D DFT to all columns of your image. The output will be a matrix of the same size as I where each column is the 1D DFT result of each column from I.
This is something to think about, but should you want to apply this to all rows of your image, you would simply transpose I before it goes into dft1 so that the rows become columns and you can operate on these new "columns". Once you're done, you simply have to transpose the result back so that you'll get your output from dft1 shaped such that the results are applied on a per row basis. Therefore:
I = imread('sample.jpg');
R = dft1(double(I.')).';
Hope this helps! Good luck!
Please see the following issue:
P=rand(4,4);
for i=1:size(P,2)
for j=1:size(P,2)
[r,p]=corr(P(:,i),P(:,j))
end
end
Clearly, the loop will cause the number of correlations to be doubled (i.e., corr(P(:,1),P(:,4)) and corr(P(:,4),P(:,1)). Does anyone have a suggestion on how to avoid this? Perhaps not using a loop?
Thanks!
I have four suggestions for you, depending on what exactly you are doing to compute your matrices. I'm assuming the example you gave is a simplified version of what needs to be done.
First Method - Adjusting the inner loop index
One thing you can do is change your j loop index so that it only goes from 1 up to i. This way, you get a lower triangular matrix and just concentrate on the values within the lower triangular half of your matrix. The upper half would essentially be all set to zero. In other words:
for i = 1 : size(P,2)
for j = 1 : i
%// Your code here
end
end
Second Method - Leave it unchanged, but then use unique
You can go ahead and use the same matrix like you did before with the full two for loops, but you can then filter the duplicates by using unique. In other words, you can do this:
[Y,indices] = unique(P);
Y will give you a list of unique values within the matrix P and indices will give you the locations of where these occurred within P. Note that these are column major indices, and so if you wanted to find the row and column locations of where these locations occur, you can do:
[rows,cols] = ind2sub(size(P), indices);
Third Method - Use pdist and squareform
Since you're looking for a solution that requires no loops, take a look at the pdist function. Given a M x N matrix, pdist will find distances between each pair of rows in a matrix. squareform will then transform these distances into a matrix like what you have seen above. In other words, do this:
dists = pdist(P.', 'correlation');
distMatrix = squareform(dists);
Fourth Method - Use the corr method straight out of the box
You can just use corr in the following way:
[rho, pvals] = corr(P);
corr in this case will produce a m x m matrix that contains the correlation coefficient between each pair of columns an n x m matrix stored in P.
Hopefully one of these will work!
this works ?
for i=1:size(P,2)
for j=1:i
Since you are just correlating each column with the other, then why not just use (straight from the documentation)
[Rho,Pval] = corr(P);
I don't have the Statistics Toolbox, but according to http://www.mathworks.com/help/stats/corr.html,
corr(X) returns a p-by-p matrix containing the pairwise linear correlation coefficient between each pair of columns in the n-by-p matrix X.
Let's say I have two arrays X and Y and I need a matrix M(i, j) = some_func(X(i), Y(j)). How can I get that without using loops?
The best answer is to use bsxfun, IF it is an option. According to the help for bsxfun, it will work on any general dyadic function, as long as:
FUNC can also be a handle to any binary element-wise function not listed
above. A binary element-wise function in the form of C = FUNC(A,B)
accepts arrays A and B of arbitrary but equal size and returns output
of the same size. Each element in the output array C is the result
of an operation on the corresponding elements of A and B only. FUNC must
also support scalar expansion, such that if A or B is a scalar, C is the
result of applying the scalar to every element in the other input array.
If your function accepts only scalar input, then loops are the simple alternative.
It's difficult to answer your vague question, and it ultimately depends on your function. What you can do is use meshgrid and then perform your operation, typically with use of the dot operator
e.g.
x = 1:5;
y = 1:3;
[X,Y] = meshgrid (x,y)
M = X.^Y;
I am doing my dissertation now. I stuck with a integral. My function is defined as
myfun =(exp(t*Q)*V*x)(j);
where Q and V are a matrix (n*n), x is a vector which elements are 1, then after calculation we get the j_th element of that vector then I need to integrate the function against t.
I want to use the quad in the matlab. However the point is that it will report the inner matrix is not the same size. Since A here is not a number ?....
How can I do this. Otherwise I could only write a loop against t itself, which is extremely slow.
Thanks
You can use SUBSREF for this (you still neet to loop over all j's, though):
myfunOfT = #(t)(subsref(exp(t*Q)*V*x,struct('type','()','subs',j);
This returns the value of the jth element of the array at time t.