What is a good substitute for matlabFunction? - matlab

I wrote a small program in MATLAB to compute the Shapley value
using the multi-linear extension of a TU game. However, I run
into trouble with the Symbolic Math Toolbox of MATLAB. In
the program I have to integrate a set of functions to get the
Shapley value. However, inside a MATLAB program I cannot use
the int() command
Error using sym/subsindex (line 663) Ivalid indexing or function definition. When defining a function, ensure that the body of the function is a SYM object. When indexing, the input must be numeric, logical or ':'.
Error in ShapleyValueML (line 65)shv(jj)=int(dfy,0,1)
as a consequence I have to use integral() instead. In this case, I
need to transcribe the set of expressions into MATLAB function handle
with matlabFunction(). However, on all Linux machines (MATLAB R2014a) on
which I have access this command does not work (see the discussion below).
As a workaround, the MATLAB program returns the set of functions
into the current workspace, there the Shapley value can be computed
using the int() command.
To make the discussion more concrete, let us consider this small
MATLAB program first.
function [shv,F,dfm]=ShapleyValueML(v)
N=length(v);
[~, n]=log2(N);
S=1:N;
int=0:-1:1-n;
mat=(rem(floor(S(:)*pow2(int)),2)==1);
cmat=(rem(floor(S(:)*pow2(int)),2)==0);
x=sym('x',[1 n]);
mx=1-x;
y = sym('y');
vy=ones(1,n)*y;
F=0;
shv=zeros(1,n);
dfm=cell(1,n);
for ss=1:N
pd1=x(mat(ss,:));
pd2=mx(cmat(ss,:));
pd=prod(pd1)*prod(pd2)*v(ss);
F=pd+F;
end
F=expand(F);
for jj=1:n
dF=diff(F,x(jj));
dfy=subs(dF,x,vy);
%% Does not work!! MATLAB bug???
% mf=matlabFunction(dfy);
% shv(jj)=integral(mf,0,1);
%%
%% The best would be to use:
%%
% shv(jj)=int(dfy,0,1)
%% but it cannot be used inside a program.
dfm{jj}=dfy;
end
end
The commented parts are the parts that do not work inside
the program, but are needed to compute the Shapley value
with that program, which is its purpose. I tested this program
up to 12 players, and I was able to successfully calculate the
Shapley value by a two step procedure. Hence, the above program
specifies correctly the considered problem. To get a better
understanding of this two step procedure and of the functionality
of the above program, let us focus on a three person game.
The values of the coalitions are given by the following data array
>> v = [0,0,90,0,100,120,220];
Notice that coalitions are ordered in accordance with their unique
integer representations. The game is defined, we can now evaluate
the multi-linear extension and the set of partial derivatives with
the above program, but not the Shapley value.
>> [shv,F,dfm]=ShapleyValueML(v);
Integration of the set of partial derivatives runs over the diagonal
of the unit-cube, but then we can set the variables from [x1,x2,x3]
to [y,y,y], and integration runs from 0 to 1.
>> for k=1:3, shv(k)=int(dfm{k},0,1);end;
The solution of the integration is the Shapley value given by:
>> shv
shv =
65 75 80
Checking that this is indeed the Shapley value can be accomplished
with a potential function approach implemented in
>> sh_v=ShapleyValue(v)
sh_v =
65 75 80
that ships with my MATLAB Game Theory Toolbox MatTuGames from
http://www.mathworks.com/matlabcentral/fileexchange/35933-mattugames
Instead of integrating with int() one can also use integral(),
but then the contents like
>> dfm{1}
ans =
- 90*y^2 + 190*y
must be rewritten with matlabFunction() into a function handle. As I
have mentioned above this does not work under Linux
(MATLAB R2013a,R2013b,R2014a). To see this let us try to reproduce
the example
>> syms x y
>> r = sqrt(x^2 + y^2);
from the documentation at the URL:
http://www.mathworks.de/de/help/symbolic/generate-matlab-functions.html?searchHighlight=matlabFunction
This should give
ht =
#(x,y)tanh(sqrt(x.^2+y.^2))
but I get
>> ht = matlabFunction(tanh(r))
Cell contents reference from a non-cell array object.
Error in vectorize (line 15)
c = cells{i};
Error in sym/matlabFunction>mup2mat (line 319)
res = vectorize(res(2:end-1)); % remove quotes
Error in sym/matlabFunction>mup2matcell (line 304)
r = mup2mat(c{1});
Error in sym/matlabFunction (line 123)
body = mup2matcell(funs);
Here comes now my question: Exists there an alternative procedure to
get from
>> dfm{1}
ans =
- 90*y^2 + 190*y
a function handle
>> df=#(y) (- 90.*y.^2 + 190.*y)
df =
#(y)(-90.*y.^2+190.*y)
to integrate it by
>> integral(df,0,1)
ans =
65
Or to put it differently. Is there an alternative method available to
change multiplication * to element-wise multiplication .*, and the
power operation ^ to element-wise power.^?
Of course, any suggestions of improvement for the above MATLAB program
are highly appreciated.

I think I know what the problem is; Towards the beginning of ShapleyValueML function, you have a variable named int which shadows the builtin integration function:
...
int=0:-1:1-n; %# <-- problem!
...
shv(jj)=int(dfy,0,1)
...
That explains the error coming from sym/subsindex, you were using a symbolic object as an index into the numeric array int.
Change the variable name to something else, and the commented code runs fine (the symbolic integration)! Simple as that :)

Related

Mixed Integer Quadratic Programming with linear constraints in Matlab calling Gurobi

I have some troubles to understand how to implement the following MIQP (Mixed Integer Quadratic Programming) with linear constraints in Matlab calling Gurobi.
Let me explain in a schematic way my setting.
(1) x is the unknown and it is a column vector with size 225x1.
(2) The objective function (which should be minimised wrto x) looks like
which can be rewritten as
I have a Matlab script computing alpha, Q,c (Q,c sparse) when some_known_parameters1 are given:
function [alpha, Q,c]=matrix_objective_function(some_known_parameters1)
%...
end
(3) The constraints are linear in x, include equalities and inequalities, and are written in the form
I have a Matlab script computing Aeq,beq,Aineq,bineq (Aeq,Aineq sparse) when some_known_parameters2 is given:
function [Aeq,beq,Aineq,bineq]=constraints(some_known_parameters2)
%...
end
(4) Some components of x are restricted to be in {0,1}. I have a Matlab script producing a string of letters B (binary), C (continous) when some_known_parameters3 is given:
function type=binary_continuous(some_known_parameters3)
%...
end
Now, I need to put together (1)-(4) using Gurobi. I am struggling to understand how. I found this example but it looks very cryptic to me. Below I report some lines I have attempted to write, but they are incomplete and I would like your help to complete them.
clear
rng default
%Define some_known_parameters1,
some_known_parameters2,some_known_parameters3 [...]
%1) generate alpha,Q,c,Aeq,beq,Aineq,bineq,type with Q,c,Aeq, Aineq sparse
[alpha, Q,c]=matrix_objective_function(some_known_parameters1)
[Aeq,beq,Aineq,bineq]=constraints(some_known_parameters2)
type=binary_continuous(some_known_parameters3)
%2) Set up Gurobi
clear model;
model.A=[Aineq; Aeq];
model.rhs=full([bineq(:); beq(:)]);
model.sense=[repmat('<', size(Aineq,1),1); repmat('=', size(Aeq,1),1)];
model.Q=Q; %not sure?
model.alpha=alpha; %not sure?
model.c=c; %not sure?
model.vtype=type;
result=gurobi(model); %how do I get just the objective function here without the minimiser?
Questions:
(1) I'm not sure about
model.Q=Q;
model.alpha=alpha;
model.c=c;
I'm just trying to set the matrices of the objective function using the letters provided here but it gives me error. The example here seems to me doing
model.Q=Q;
model.obj=c;
But then how do I set alpha? Is it ignoring it because it does not change the set of solutions?
(2) How do I get as output stored in a matrix just the minimum value of the objective function without the corresponding x?
(1) You're right, there's no need to pass the constant alpha since it doesn't affect the optimal solution. Gurobi's MATLAB API only accepts sparse matrices. Furthermore model.obj is always the c vector in the problem statement:
model.Q = sparse(Q);
model.obj = c;
(2) To get the optimal objective value, you first need to pass your model to gurobi and solve it. Then you can access it via the objval attribute:
results = gurobi(model);
val = results.objval + alpha

Arbitrary dimension for CVXGEN program

I would like to solve a QP/LP problem in MatLab using CVXGEN. I have preference for CVXGEN over CVX, since CVXGEN is much faster. In particular, I would like to solve
min f(x) s.t. x in X
where f(x) is in quadratic form and X is compact, convex, and defined by linear functions. The size of the problem varies depending on the run. I would like to automate the procedure as much as possible. To illustrate, an example of a CVXGEN code is:
dimensions
n = 10
end
parameters
Q (n,n) psd # quadratic penalty.
end
variables
x (n)
end
minimize
quad(x, Q)
end​​​​​​​​​​​​​
​This code is inputted at cvxgen.com. On this website, I can then generate the C code which gives me a unique number. I can then compile this into MEX code using the unique number. Last, I can call this MEX code (csolve) from MatLab by running the following code
n=10; % dimension of the problem
params.Q = eye(n,n); % assume that the Hessian is the identity
[vars, status] = csolve(params); % this outputs optimal x* = 0.
This procedure, however, requires for each dimension of the problem n that I want to run, I need to go to cvxgen.com, change n, compile code, then run my MatLab code. Is it possible to let n enter as a parameter? This way, I only need to compile the code once, then in my MatLab code set params.n = n and params.Q = eye(n,n), and then call [vars, status] = csolve(params);.
In short, I do not think it is possible to specify arbitrary dimension on cvxgen.com. I do have one solution: First, in MatLab, allow the user to specify his/her email address and password for cvxgen.com. Next, using system command in MatLab, call a python or javascript program that executes the following steps:
1) Log user into cvxgen.com
2) Goto edit tab on website
3) Copy and paste the cvxgen code
4) Goto generate c tab
5) Click generate code
6) Goto matlab tab
7) Copy unique identifying number for the compiled C code to be downloaded
8) Pass the unique identifying number back to MatLab and compile the Mex files in MatLab by calling the identifying number.
Now the Mex files can be called in MatLab by the following commands:
n=10; % dimension of the problem
params.Q = eye(n,n); % assume that the Hessian is the identity
[vars, status] = csolve(params); % this outputs optimal x* = 0.

While loop error with Netwon-Raphson Method

I am trying to find use to Newton-Raphson method to find the roots. It does this by making a guess and then improving the guess after each iteration until you get one of the zeros.
Because the Newton-Raphson method quickly finds the zeros, it gives me a small error immediately and after two or three iterations max it should fail to meet the conditions of the while loop. However, the problem is that when I remove the semi-colon after "error" in my loop, I start getting fractions that should break the while loop, but its like Matlab doesn't know that 123/8328423 is less than 1. It continues to run until I manually force the program to stop running.
How do I fix this? I tried format long, format longe, and using double both in the command window, in the scrip file, and somewhere in the loop.
Thank you in advance for any tips, suggestions, or advice that may help!!
A = [1,2,-4;2,-2,-2;-4,-2,1;];
format longe
% syms x y z
% P = x^4 + 3*x^2*y^2-z^3+y+1;
% feval(symengine,'degree',P,x)
syms x
B = mateigenvalue(A);
f(x) = simplify(matdet(B));
x0 = 1;
error = 10;
while(error > .01)
x1 = x0 - f(x0)/(27*(x0)-3*(x0)^2);
error = abs(((f(x0)-f(x1))/f(x0))*100)
x0 = x1;
end
x0 = double(x0)
I reckon the main problem is with error.
It starts as double but inside the while-loop it turns into a symbolic variable and you can't easily compare symbolic variables with scalar values (the .01 in the while-loop condition).
Check in your workspace if error is symbolic (or type class(error) and check if sym is returned). I guess it is symbolic because a fraction is returned (123/8328423), as instead Matlab treats double values with decimals, not fractions.
If so, try doing (inside the while-loop) a conversion for error that is, under the line
error = abs(((f(x0)-f(x1))/f(x0))*100);
try putting
error=double(error);
So error will be temporarily converted in double and you can easily compare its value with .01 to check the while-loop condition.
Also, it is bad practice to call a variable error since error() is a built-in function in Matlab. By naming a variable error you cannot use the error() function. Same story goes for other built-in functions.

MATLAB: Using FZERO on a function which has a vector output

I am working on my thesis and running in some programming problems in Matlab. I am trying to implement the ''golden Bisection Method'' to speed up my code. To this end, I've consulted the build in function FZERO.
So I am determining the difference between two vectors which are both (1x20).
Difference = Clmax_dist-cl_vec;
Clmax_dist comes from a semi-empirical method and cl_vec comes from the excecution of an external AVL.exe file.
Essentially, this difference depends only on one single variable AOA because the Clmax_dist vector is a constant. Hence, I am constantly feeding a new AOA value to the AVL.exe to obtain a new cl_vec and compare this again to the constant Clmax_dist.
I am iterating this until one of the element in the vector becomes either zero or negative. My loop stops and reveals the final AOA. This is a time consuming method and I wanted to use FZERO to speed this up.
However, the FZERO documentation reveals that it only works on function which has a scalar as input. Hence, my question is: How can I use FZERO with a function which has a vector as an output. Or do i need to do something totally different?
I've tried the following:
[Difference] = obj.DATCOMSPANLOADING(AOA);
fun=#obj.DATCOMSPANLOADING;
AOA_init = [1 20];
AOA_root = fzero(fun,AOA_init,'iter');
this gave me the following error:
Operands to the || and && operators must be convertible to logical scalar values.
Error in fzero (line 423)
while fb ~= 0 && a ~= b
Error in CleanCLmax/run (line 11)
AOA_root = fzero(fun,AOA_init,'iter');
Error in InitiatorController/moduleRunner (line 11)
ModuleHandle.run;
Error in InitiatorController/runModule (line 95)
obj.moduleRunner(ModuleHandle);
Error in RunSteps (line 7)
C.runModule('CleanCLmax');
The DATCOMSPANDLOADING function contains the following:
function [Difference] = DATCOMSPANLOADING(obj,AOA)
[Input]= obj.CLmaxInput; % Creates Input structure and airfoil list
obj.writeAirfoils(Input); % Creates airfoil coordinate files in AVL directory
[Clmax_dist,YClmax,Cla_mainsections] = obj.Clmax_spanwise(Input); % Creates spanwise section CLmax with ESDU method
[CLa] = obj.WingLiftCurveSlope(Input,Cla_mainsections); % Wing lift curve slope
[Yle_wing,cl_vec] = obj.AVLspanloading(Input,CLa,AOA); % Creates spanloading with AVL
Difference = Clmax_dist-cl_vec;
end
If I need to elaborate further, feel free to ask. And of course, Thank you very much.
fzero indeed only works on scalars. However, you can turn your criterion into a scalar: You are interested in AOA where any of the elements in the vector becomes zero, in which case you rewrite your objective function to return two output arguments: minDifference, which is min(Difference), and Difference. The first output, minDifference is the minimum of the difference, i.e. what fzero should try to optimize (from your question, I'm assuming all values start positive). The second output you'd use to inspect your difference vector in the end.

What is your favourite MATLAB/Octave programming trick? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I think everyone would agree that the MATLAB language is not pretty, or particularly consistent. But nevermind! We still have to use it to get things done.
What are your favourite tricks for making things easier? Let's have one per answer so people can vote them up if they agree. Also, try to illustrate your answer with an example.
Using the built-in profiler to see where the hot parts of my code are:
profile on
% some lines of code
profile off
profile viewer
or just using the built in tic and toc to get quick timings:
tic;
% some lines of code
toc;
Directly extracting the elements of a matrix that satisfy a particular condition, using logical arrays:
x = rand(1,50) .* 100;
xpart = x( x > 20 & x < 35);
Now xpart contains only those elements of x which lie in the specified range.
Provide quick access to other function documentation by adding a "SEE ALSO" line to the help comments. First, you must include the name of the function in all caps as the first comment line. Do your usual comment header stuff, then put SEE ALSO with a comma separated list of other related functions.
function y = transmog(x)
%TRANSMOG Transmogrifies a matrix X using reverse orthogonal eigenvectors
%
% Usage:
% y = transmog(x)
%
% SEE ALSO
% UNTRANSMOG, TRANSMOG2
When you type "help transmog" at the command line, you will see all the comments in this comment header, with hyperlinks to the comment headers for the other functions listed.
Turn a matrix into a vector using a single colon.
x = rand(4,4);
x(:)
Vectorizing loops. There are lots of ways to do this, and it is entertaining to look for loops in your code and see how they can be vectorized. The performance is astonishingly faster with vector operations!
Anonymous functions, for a few reasons:
to make a quick function for one-off uses, like 3x^2+2x+7. (see listing below) This is useful for functions like quad and fminbnd that take functions as arguments. It's also convenient in scripts (.m files that don't start with a function header) since unlike true functions you can't include subfunctions.
for closures -- although anonymous functions are a little limiting as there doesn't seem to be a way to have assignment within them to mutate state.
.
% quick functions
f = #(x) 3*x.^2 + 2*x + 7;
t = (0:0.001:1);
plot(t,f(t),t,f(2*t),t,f(3*t));
% closures (linfunc below is a function that returns a function,
% and the outer functions arguments are held for the lifetime
% of the returned function.
linfunc = #(m,b) #(x) m*x+b;
C2F = linfunc(9/5, 32);
F2C = linfunc(5/9, -32*5/9);
Matlab's bsxfun, arrayfun, cellfun, and structfun are quite interesting and often save a loop.
M = rand(1000, 1000);
v = rand(1000, 1);
c = bsxfun(#plus, M, v);
This code, for instance, adds column-vector v to each column of matrix M.
Though, in performance critical parts of your application you should benchmark these functions versus the trivial for-loop because often loops are still faster.
LaTeX mode for formulas in graphs: In one of the recent releases (R2006?) you add the additional arguments ,'Interpreter','latex' at the end of a function call and it will use LaTeX rendering. Here's an example:
t=(0:0.001:1);
plot(t,sin(2*pi*[t ; t+0.25]));
xlabel('t');
ylabel('$\hat{y}_k=sin 2\pi (t+{k \over 4})$','Interpreter','latex');
legend({'$\hat{y}_0$','$\hat{y}_1$'},'Interpreter','latex');
Not sure when they added it, but it works with R2006b in the text(), title(), xlabel(), ylabel(), zlabel(), and even legend() functions. Just make sure the syntax you are using is not ambiguous (so with legend() you need to specify the strings as a cell array).
Using xlim and ylim to draw vertical and horizontal lines. Examples:
Draw a horizontal line at y=10:
line(xlim, [10 10])
Draw vertical line at x=5:
line([5 5], ylim)
Here's a quick example:
I find the comma separated list syntax quite useful for building function calls:
% Build a list of args, like so:
args = {'a', 1, 'b', 2};
% Then expand this into arguments:
output = func(args{:})
Here's a bunch of nonobvious functions that are useful from time to time:
mfilename (returns the name of the currently running MATLAB script)
dbstack (gives you access to the names & line numbers of the matlab function stack)
keyboard (stops execution and yields control to the debugging prompt; this is why there's a K in the debug prompt K>>
dbstop error (automatically puts you in debug mode stopped at the line that triggers an error)
I like using function handles for lots of reasons. For one, they are the closest thing I've found in MATLAB to pointers, so you can create reference-like behavior for objects. There are a few neat (and simpler) things you can do with them, too. For example, replacing a switch statement:
switch number,
case 1,
outargs = fcn1(inargs);
case 2,
outargs = fcn2(inargs);
...
end
%
%can be turned into
%
fcnArray = {#fcn1, #fcn2, ...};
outargs = fcnArray{number}(inargs);
I just think little things like that are cool.
Using nargin to set default values for optional arguments and using nargout to set optional output arguments. Quick example
function hLine=myplot(x,y,plotColor,markerType)
% set defaults for optional paramters
if nargin<4, markerType='none'; end
if nargin<3, plotColor='k'; end
hL = plot(x,y,'linetype','-', ...
'color',plotColor, ...
'marker',markerType, ...
'markerFaceColor',plotColor,'markerEdgeColor',plotColor);
% return handle of plot object if required
if nargout>0, hLine = hL; end
Invoking Java code from Matlab
cellfun and arrayfun for automated for loops.
Oh, and reverse an array
v = 1:10;
v_reverse = v(length(v):-1:1);
conditional arguments in the left-hand side of an assignment:
t = (0:0.005:10)';
x = sin(2*pi*t);
x(x>0.5 & t<5) = 0.5;
% This limits all values of x to a maximum of 0.5, where t<5
plot(t,x);
Know your axis properties! There are all sorts of things you can set to tweak the default plotting properties to do what you want:
set(gca,'fontsize',8,'linestyleorder','-','linewidth',0.3,'xtick',1:2:9);
(as an example, sets the fontsize to 8pt, linestyles of all new lines to all be solid and their width 0.3pt, and the xtick points to be [1 3 5 7 9])
Line and figure properties are also useful, but I find myself using axis properties the most.
Be strict with specifying dimensions when using aggregation functions like min, max, mean, diff, sum, any, all,...
For instance the line:
reldiff = diff(a) ./ a(1:end-1)
might work well to compute relative differences of elements in a vector, however in case the vector degenerates to just one element the computation fails:
>> a=rand(1,7);
>> diff(a) ./ a(1:end-1)
ans =
-0.5822 -0.9935 224.2015 0.2708 -0.3328 0.0458
>> a=1;
>> diff(a) ./ a(1:end-1)
??? Error using ==> rdivide
Matrix dimensions must agree.
If you specify the correct dimensions to your functions, this line returns an empty 1-by-0 matrix, which is correct:
>> diff(a, [], 2) ./ a(1, 1:end-1)
ans =
Empty matrix: 1-by-0
>>
The same goes for a min-function which usually computes minimums over columns on a matrix, until the matrix only consists of one row. - Then it will return the minimum over the row unless the dimension parameter states otherwise, and probably break your application.
I can almost guarantee you that consequently setting the dimensions of these aggregation functions will save you quite some debugging work later on.
At least that would have been the case for me. :)
The colon operator for the manipulation of arrays.
#ScottieT812, mentions one: flattening an array, but there's all the other variants of selecting bits of an array:
x=rand(10,10);
flattened=x(:);
Acolumn=x(:,10);
Arow=x(10,:);
y=rand(100);
firstSix=y(1:6);
lastSix=y(end-5:end);
alternate=y(1:2:end);
In order to be able to quickly test a function, I use nargin like so:
function result = multiply(a, b)
if nargin == 0 %no inputs provided, run using defaults for a and b
clc;
disp('RUNNING IN TEST MODE')
a = 1;
b = 2;
end
result = a*b;
Later on, I add a unit test script to test the function for different input conditions.
Using ismember() to merge data organized by text identfiers. Useful when you are analyzing differing periods when entries, in my case company symbols, come and go.
%Merge B into A based on Text identifiers
UniverseA = {'A','B','C','D'};
UniverseB = {'A','C','D'};
DataA = [20 40 60 80];
DataB = [30 50 70];
MergeData = NaN(length(UniverseA),2);
MergeData(:,1) = DataA;
[tf, loc] = ismember(UniverseA, UniverseB);
MergeData(tf,2) = DataB(loc(tf));
MergeData =
20 30
40 NaN
60 50
80 70
Asking 'why' (useful for jarring me out of a Matlab runtime-fail debugging trance at 3am...)
Executing a Simulink model directly from a script (rather than interactively) using the sim command. You can do things like take parameters from a workspace variable, and repeatedly run sim in a loop to simulate something while varying the parameter to see how the behavior changes, and graph the results with whatever graphical commands you like. Much easier than trying to do this interactively, and it gives you much more flexibility than the Simulink "oscilloscope" blocks when visualizing the results. (although you can't use it to see what's going on in realtime while the simulation is running)
A really important thing to know is the DstWorkspace and SrcWorkspace options of the simset command. These control where the "To Workspace" and "From Workspace" blocks get and put their results. Dstworkspace defaults to the current workspace (e.g. if you call sim from inside a function the "To Workspace" blocks will show up as variables accessible from within that same function) but SrcWorkspace defaults to the base workspace and if you want to encapsulate your call to sim you'll want to set SrcWorkspace to current so there is a clean interface to providing/retrieving simulation input parameters and outputs. For example:
function Y=run_my_sim(t,input1,params)
% runs "my_sim.mdl"
% with a From Workspace block referencing I1 as an input signal
% and parameters referenced as fields of the "params" structure
% and output retrieved from a To Workspace block with name O1.
opt = simset('SrcWorkspace','current','DstWorkspace','current');
I1 = struct('time',t,'signals',struct('values',input1,'dimensions',1));
Y = struct;
Y.t = sim('my_sim',t,opt);
Y.output1 = O1.signals.values;
Contour plots with [c,h]=contour and clabel(c,h,'fontsize',fontsize). I usually use the fontsize parameter to reduce the font size so the numbers don't run into each other. This is great for viewing the value of 2-D functions without having to muck around with 3D graphs.
Vectorization:
function iNeedle = findClosest(hay,needle)
%FINDCLOSEST find the indicies of the closest elements in an array.
% Given two vectors [A,B], findClosest will find the indicies of the values
% in vector A closest to the values in vector B.
[hay iOrgHay] = sort(hay(:)'); %#ok must have row vector
% Use histogram to find indices of elements in hay closest to elements in
% needle. The bins are centered on values in hay, with the edges on the
% midpoint between elements.
[iNeedle iNeedle] = histc(needle,[-inf hay+[diff(hay)/2 inf]]); %#ok
% Reversing the sorting.
iNeedle = iOrgHay(iNeedle);
Using persistent (static) variables when running an online algorithm. It may speed up the code in areas like Bayesian machine learning where the model is trained iteratively for the new samples. For example, for computing the independent loglikelihoods, I compute the loglikelihood initially from scratch and update it by summing this previously computed loglikelihood and the additional loglikelihood.
Instead of giving a more specialized machine learning problem, let me give a general online averaging code which I took from here:
function av = runningAverage(x)
% The number of values entered so far - declared persistent.
persistent n;
% The sum of values entered so far - declared persistent.
persistent sumOfX;
if x == 'reset' % Initialise the persistent variables.
n = 0;
sumOfX = 0;
av = 0;
else % A data value has been added.
n = n + 1;
sumOfX = sumOfX + x;
av = sumOfX / n; % Update the running average.
end
Then, the calls will give the following results
runningAverage('reset')
ans = 0
>> runningAverage(5)
ans = 5
>> runningAverage(10)
ans = 7.5000
>> runningAverage(3)
ans = 6
>> runningAverage('reset')
ans = 0
>> runningAverage(8)
ans = 8
I'm surprised that while people mentioned the logical array approach of indexing an array, nobody mentioned the find command.
e.g. if x is an NxMxO array
x(x>20) works by generating an NxMxO logical array and using it to index x (which can be bad if you have large arrays and are looking for a small subset
x(find(x>20)) works by generating list (i.e. 1xwhatever) of indices of x that satisfy x>20, and indexing x by it. "find" should be used more than it is, in my experience.
More what I would call 'tricks'
you can grow/append to arrays and cell arrays if you don't know the size you'll need, by using end + 1 (works with higher dimensions too, so long as the dimensions of the slice match -- so you'll have to initialize x to something other than [] in that case). Not good for numerics but for small dynamic lists of things (or cell arrays), e.g. parsing files.
e.g.
>> x=[1,2,3]
x = 1 2 3
>> x(end+1)=4
x = 1 2 3 4
Another think many people don't know is that for works on any dim 1 array, so to continue the example
>> for n = x;disp(n);end
1
2
3
4
Which means if all you need is the members of x you don't need to index them.
This also works with cell arrays but it's a bit annoying because as it walks them the element is still wrapped in a cell:
>> for el = {1,2,3,4};disp(el);end
[1]
[2]
[3]
[4]
So to get at the elements you have to subscript them
>> for el = {1,2,3,4};disp(el{1});end
1
2
3
4
I can't remember if there is a nicer way around that.
-You can make a Matlab shortcut to an initialization file called startup.m. Here, I define formatting, precision of the output, and plot parameters for my Matlab session (for example, I use a larger plot axis/font size so that .fig's can be seen plainly when I put them in presentations.) See a good blog post from one of the developers about it http://blogs.mathworks.com/loren/2009/03/03/whats-in-your-startupm/ .
-You can load an entire numerical ascii file using the "load" function. This isn't particularly fast, but gets the job done quickly for prototyping (shouldn't that be the Matlab motto?)
-As mentioned, the colon operator and vectorization are lifesavers. Screw loops.
x=repmat([1:10],3,1); % say, x is an example array of data
l=x>=3; % l is a logical vector (1s/0s) to highlight those elements in the array that would meet a certain condition.
N=sum(sum(l));% N is the number of elements that meet that given condition.
cheers -- happy scripting!