Several versions of a plugin in a feature.xml - plugins

I've created an feature-based Eclipse product where all dependencies respectively external plugins are specified in a dependencies feature project. Some dependencies need different versions of the same plugin. How can I specify several versions of a plugin in a feature.xml? Eclipse seems to always use the current version of a plugin. I've tried to add a dependency with a strict version interval, e.g. [1.6.0.v201011041432,1.6.0.v201011041432], in the feature.xml but Eclipse doesn't accept this format.

I had a similar problem when running a feature based product within Eclipse (Kepler) where multiple versions of the same bundle were involved.
In the end I used a workaround - I changed the symbolic names of the bundles, so they all have different names. If you consequently use Import-Package instead of Require-Bundle this will make no difference in the dependencies you define for bundles or in the OSGi runtime, only in your Feature definition.
This solution is not pretty, but at least it's rather easy to do.
Thinking about that OSGi is intended to target exactly this kind of use case where you have multiple versions of the same dependency/bundle it's rather strange how bad the support in Eclipse is, if you actually have this kind of use case.

Related

If 2 versions of a plugin are stored in eclipse plugin directory, how does eclipse determine which to use

In Eclipse plugin directory I have plugin jar called someplugin.1.jar dated yesterday and someplugin.2.jar dated today.
How does eclipse decide which one to use?
Thanks.
The name of the JAR is irrelevant; if they are bundle/plugin JARs, it's the contents of their manifest.mf files that Eclipse uses to determine the ID and version of the bundle/plugin they contain.
If they are the same plugin ID but different versions, then which one is loaded is based on expressed dependencies of other plugins. It's possible that they both can be loaded (assuming the plugin is not marked as a singleton), if there are other plugins that depend on the different versions (although that is rare).
If the plugin is a singleton (most are, because they have to be in order to contribute to extension points), then I'm pretty sure the one with the higher version will be chosen if there are no dependencies that dictate otherwise. If both JARs have the same plugin ID and version then I don't think there is deterministic behavior about which one will show up in runtime.

What's the difference between Eclipse Packages and Plug-ins?

In Dependencies tab, I have a choice between plug-ins and packages.
What's the difference between them? For org.eclipse.compare, I have it in imported package and also in plug-ins.
I find the jar file in plugins directory, but I don't know where the package file of org.eclipse.compare is located.
In the export menu, it seems like that there seems to be only exporting to jar, not exporting a plugin or packages. How can I export packages?
ADDED
Based on this post - How to import a package from Eclipse? and shiplu's answer. This is what I came to understand. Please correct me if I'm wrong.
In eclipse, when I use come external class, I can use Quick-Assistant or Organize imports (Ctrl-Shift-O) to resolve the reference. Eclipse adds the package that contains the class in Imported Packages for the project that I'm working on. A package can contain multiple classes (types). Eclipse understands what plugin contains the package, and resolve the reference issues.
A plug-in (jar file) can contain multiple packages. By specifying a required plug-ins in the dependencies tab, we can reference all the packages (and classes in the packages) for all the java projects in the eclipse IDE.
And from my experience, I had to add all the dependencies in order to make headless RCP standalone (http://prosseek.blogspot.com/2012/12/headless-rcp-standalone.html).
An Eclipse plug-in is basically an OSGi bundle with additional plugin.xml file which Eclipse IDE understands and interprets.
So the answer to your question lies in the OSGi specification and the OSGi programming model, since, very simply put, Eclipse is an Application running on implementation of OSGi called Equinox.
OSGi is all about having modular applications and so it defines several levels of modularity.
One such level is a bundle-level (module-level) modularity and more fine grained level is the package level modularity.
So you can have your OSGi application (a set of bundles; eclipse is just that) which consists of db-bundle (which provides data store services), app-domain-bundle (which provides your application domain services) and remote-bundle (which exposes to the web your application via REST for example).
And then you say remote-bundle depends on domain-bundle which depends on db-bundle.
Which is all good, but cripples the inherent modularity OSGi provides, because you are basically restricting your application to specific implementations of db-bundle and remote-bundle i.e. to specific implementations of the services they provide.
Instead, you can establish the above dependencies not between bundles but between packages i.e. establish a service-level dependencies.
Then you say domain-bundle requires dbstore.service package to run, it doesn't care which bundle provides it it just needs an instance of this service to be able to work. So you can have multiple bundles providing implementations of the dbstore.service, and the domain-bundle can pick and choose at runtime what service to use.
It is really hard to explain OSGi concepts in just a several sentences, I'd really suggest you dig around the web on this and maybe even have a look at the OSGi specification.
Another way to explain it is to say that bundle/plug-in is a jar file with specific structure and metadata descriptors (MANIFEST.MF and plugin.xml), which describe its contents in Java language concepts - which java packages and services this specific jar contains and will expose to the OSGi runtime so that they can be consumed by other bundles. I.e. the bundle is the physical deployable entity while the descriptors are metadata about what actually is being deployed.
EDIT:
Package or Service-level dependencies also have some drawbacks, as Lii points out in the comments below, the main one being that it adds complexity and dynamics to the dependency model. Have a look at her or his comment below - it is worth reading!
You use Imported Packages when you want to use a specific package but do not care which plugin provides it. OSGI will choose one for you.
Eclipse plugins is something like extension to the IDE itself. But imported packages are actually packages that you'll use in your current project.
One is for development IDE another is for the project you are coding.

Selectively include dependencies in JAR

I have a library that I wrote in Scala that uses Bouncy Castle and has a whole bunch of dependencies. When I roll a jar, I can either roll a "fat" jar that has all the dependencies (including scala), which weighs in around 19 MB, or I can roll a skinny jar, which doesn't have dependencies, but is only a few hundred KB.
The problem is that I need to include the Bouncy Castle classes/jar with my library, because if its not on the classpath at runtime, all kinds of exceptions get thrown.
So, I think the ideal situation is if there is some way that I can get either Maven or SBT to include some but not all dependencies in the jar that gets rolled. Some dependencies are needed at compile-time, but not at run time, such as the Scala standard libraries. Is there some way to get that to happen?
Thanks!
I would try out the sbt proguard plugin from https://github.com/nuttycom/sbt-proguard-plugin . It should be able to weed out the classes that are not in use.
If it is sufficient to explicitly define which dependencies should be added (one the artifact-level, i.e., single JARs), you can define an assembly (in case of a single project) or an additional assembly project (in case of a multi-module project). Assembly descriptors can explicitly exclude/include artifacts from the dependencies.
Here is some good documentation on this topic (section 8.5.4), here is the official documentation.
Note that you can include all artifacts that belong to one group by using the wildcard notation in dependecySets, e.g. hibernate:*:jar would include all JAR files belonging to the hibernate group.
Covering maven...
Because you declare your project to be dependent upon bouncy castle in your maven pom, anybody using maven to depend upon your library will by default pull in bouncy castle as a transitive dependency.
You should set the appropriate scope on your dependencies, e.g. compile for stuff needed at compile and runtime, test for dependencies only needed in testing and provided for stuff you expect to be provided by the environment.
Whether your library's dependencies are packaged into dependent projects when they are built is a question of how those are projects configured and setting the scopes will influence the default behaviour.
For example, jar type packaging by default does not include dependencies, whereas war will include those in compile scope (but not test or provided). The design aim here was to have packaging plugins behave in the most commonly required way without needing configuration, but of course packaging plugins in maven can be configured to have different behaviour if needed. The plugins themselves which do packaging are well documented at the apache maven site.
If users of your library are unlikely to be using maven to build their projects, an option is to use the shade plugin which will allow you to produce an "uber-jar" which contains all the dependencies you wish. You can configure particular includes or excludes.
This can be a problematic way to deliver, for example where your library includes dependencies which version clash with the direct dependencies of projects using it, i.e. they use a different version of the same libraries yours does.
However if you can it is best that you leave this to maven to manage so that projects using your library can decide whether they want your dependencies or to specify particular versions giving them more flexibility. This is the idiomatic approach.
For more information on dependencies and scopes in maven, see the reference guide published by Sonatype.
I'm not a scala guy, but I have played around with assembling stuff in Java + Maven.
Have you tried looking into creating your own assembly descriptor for the assembly plugin? https://maven.apache.org/plugins/maven-assembly-plugin/assembly.html
You can copy / paste the jar-with-dependencies descriptor then just add some excludes to your < dependencySet >. I'm not a Maven expert, but you should be able to configure it so different profiles kick off different assembly builds.
EDIT: Ack, didn't see my HTML got hidden

Regarding 'singleton:=true' in Manifest file

I have a plugin which at present doesn't have any extension points (neither does it extend any other plugin). To resolve a certain issue I have to create an extension-point for this plugin and an appropriate extension somewhere else.
When doing this eclipse forced me to set singleton:=true in the Manifest file. I know the reason why this parameter has to be set, but I wanted to know if there are any implications on the functioning of the plugin within the product by introducing this parameter.
Thank you.
"singleton:=true" means that bundle only have one version could exist in the OSGi runtime.
Eclipse automatically adds the flag due to you provide an extension point in your bundle. If there are two version of your bundles providing the same extension point(have the same identity, might different attributes or elements) would make things mess.
From the Book Eclipse plugin Development by Dr Alex Blewitt:
The clause
singleton:=true
is an OSGi directive, which means that only one version of this plug-in can be installed in Eclipse at one time.
For plug-ins which add dependencies to the UI, there is a restriction that they must be singletons. (This constraint is one of the main reasons why installing a new plug-requires the IDE to restart.)

eclipse, one classpath for compiling, another for launching

example:
For logging, my code uses log4j. but other jars my code is dependent upon, uses slf4j instead. So both jars must be in the build path. Unfortunately, its possible for my code to directly use (depend on) slf4j now, either by context-assist, or some other developers changes. I would like any use of slf4j to show up as an error, but my application (and tests) will still need it in the classpath when running.
explanation:
I'd like to find out if this is possible in eclipse. This scenario happens often for me. I'll have a large project, that uses alot of 3rd party libraries. And of course those 3rd party jars have their own dependencies as well. So I have to include all dependencies in the classpath ("build path" in eclipse) for the application and its tests to compile and run (from within eclipse).
But I don't want my code to use all of those jars, just the few direct dependencies I've decided upon myself. So if my code accidentally uses a dependency of a dependency, I want it to show up as a compilation error. Ideally, as class not found, but any error would do.
I know I can manually configure the classpath when running outside of eclipse, and even within eclipse I can modify the classpath for a specific class I'm running (in the run configurations), but thats not manageable if you run alot of individual test cases, or have alot of main() classes.
It sounds like your project has enough dependency relationships that you might consider structuring it with OSGi bundles (plug-ins). Each bundle gets its own classloader and gets to specify what bundles (and optionally what version ranges, etc.) it depends on, what packages it exports, whether it re-exports stuff from its dependencies, etc.
Eclipse itself is structured out of Eclipse plug-ins and fragments, which are just OSGi bundles with an optional tiny bit of additional Eclipse wiring (plugin.xml, which is used to declare Eclipse "extension points" and "extensions") attached. Eclipse thus has fairly good tooling for creating and managing bundles built-in (via the Plug-in Development Environment). Much of what you find out there may lead you to conflate "OSGi bundle" with "plug-in that extends the Eclipse IDE", but the two concepts are quite separable.
The Eclipse tooling does distinguish rather clearly (and sometimes annoyingly, but in the "helpful medicine" way) between the bundles in your build environment vs. the bundles that a particular run configuration includes.
After a few years of living in OSGi land, the default Java "flat classpath" feels weird and even kind of broken to me, largely because (as you've experienced) it throws all JARs into one giant arena and hopes they can sort of work things out. The OSGi environment gives me a lot more control over dependency relationships, and as a "side effect" also naturally demands clarification of those relationships. Between these clear declarations and the tooling's enforcement of them, the project's structure is more obvious to everyone on the team.
if my code accidentally uses a dependency of a dependency, I want it to show up as a compilation error. Ideally, as class not found, but any error would do.
Put your code in one plug-in, your direct dependencies in other plug-ins, their dependencies in other plug-ins, etc. and declare each plug-in's dependencies. Eclipse will immediately do exactly what you want. You won't be offered dependencies' dependencies' contents in autocompletes; you'll get red squiggles and build errors; etc.
Why not use access rules to keep your code clean?
It looks like it would better be managed with maven, integrated in eclipse with m2eclipse.
That way, you can only execute part of the maven build lifecycle, and you can manage separate set of dependencies per build steps.
In my experience it helps to be more resrictive, I made the team filling out (paper) forms why this jar is needed and what license...
and they did rather type in a few lines of code instead of drag along 20 jars to open a file using only one line of code, or another fancy 'feature'.
Using maven could help for a while, but when you first spot jars having names like nightly-build or snapshot, you will know you're in jar-hell.
conclusion: Choose dependencies well
Would using the slf4j-over-log4j jar be useful? That allows using slf4j with actual logging going to log4j.