What is the proper HTTP method for modifying a subordinate of the named resource? - rest

I am creating a web client which has the purpose of modifying a set of database tables by adding records to them and removing records from them. It must do so atomically, so both deletion and insertion must be done with a single HTTP request. Clearly, this is a write operation of some sort, but I struggle to identify which method is appropriate.
POST seemed right at first, except that RFC 2616 specifies that a POST request must describe "a new subordinate" of the named resource. That isn't quite what I'm doing here.
PUT can be used to make changes to existing things, so that seemed about right, except that RFC 2616 also specifies that "the URI in a PUT request identifies the entity enclosed with the request [...] and the server MUST NOT attempt to apply the request to some other resource," which rules that method out because my URI does not directly specify the database tables.
PATCH seemed closer - now I am not cheating by only partly overwriting a resource - but RFC 5789 makes it clear that this method, like PUT, must actually modify the resource specified by the URI, not some subordinate resource.
So what method should I be using?
Or, more broadly for the benefit of other users:
For a request to X, you use
POST to create a new subordinate of X,
PUT to create a new X,
PATCH to modify X.
But what method should you use if you want to modify a subordinate of X?

To start.. not everything has to be REST. If REST is your hammer, everything may look like a nail.
If you really want to conform to REST ideals, PATCH is kind of out of the question. You're only really supposed to transfer state.
So the common 'solution' to this problem is to work outside the resources that you already have, but invent a new resource that represents the 'transaction' you wish to perform. This transaction can contain information about the operations you're doing in sequence, potentially atomically.
This allows you to PUT (or maybe POST) the transaction, and if needed, also GET the current state of the transaction to find out if it was successful.
In most designs this is not really appropriate though, and you should just fall back on POST and define a simple rpc-style action you perform on the parent.

First, allow me to correct your understanding of these methods.
POST is all about creating a brand new resource. You send some data to the server, and expect a response back saying where this new resource is created. The expectation would be that if you POST to /things/ the new resource will be stored at /things/theNewThing/. With POST you leave it to the server to decide the name of the resource that was created. Sending multiple identical POST requests results in multiple resources, each their own 'thing' with their own URI (unless the server has some additional logic to detect the duplicates).
PUT is mostly about creating a resource. The first major difference between PUT and POST is that PUT leaves the client in control of the URI. Generally, you don't really want this, but that's getting of the point. The other thing that PUT does, is not modify, if you read the specification carefully, it states that you replace what ever resource is at a URI with a brand new version. This has the appearance of making a modification, but is actually just a brand new resource at the same URI.
PATCH is for, as the name suggest, PATCHing a resource. You send a data to the server describing how to modify a particular resource. Consider a huge resource, PATCH allows you to send just the tiny bit of data that you wish to change, whilst PUT would require you send the entire new version.
Next, consider the resources. You have a set of tables each with many rows, that equates to a set of collections with many resources. Now, your problem is that you want to be able to atomically add resources and remove them at the same time. So you can't just POST then DELETE, as that's clearly not atomic. PATCHing the table how ever can be...
{ "add": [
{ /* a resource */ },
{ /* a resource */ } ],
"remove" : [ "id one", "id two" ] }
In that one body, we have sent the data to the server to both create two resources and delete two resources in the server. Now, there is a draw back to this, and that is that it's hard to let clients know what is going on. There's no 'proper' way of the client of the two new resources, 204 created is sort of there, but is meant have a header for the URI of the one new resource... but we added two. Sadly, this a problem you are going to face no matter what, HTTP simple isn't designed to handle multiple resources at once.
Transaction Resources
So this is a common solution people propose, and I think it stinks. The basic idea is that you first POST/PUT a blob of data on the server the encodes the transaction you wish to make. You then use another method to 'activate' this transaction.
Well hang on... that's two requests... it sends the same data that you would via PATCH and then you have fudge HTTP even more in order to somehow 'activate' this transaction. And what's more, we have this 'transaction' resource now floating around! What do we even do with that?

I know this question has been asked already some time ago, but I thought I should provide some commentary to this myself. This is actually not a real "answer" but a response to thecoshman's answer. Unfortunately, I am unable to comment on his answer which would be the right thing to do, but I don't have enough "reputation" which is a strange (and unnecessary) concept, IMHO.
So, now on to my comment for #thecoshman:
You seem to question the concept of "transactional resources" but in your answer it looks to me that you might have misunderstood the concept of them. In your answer, you describe that you first do a POST with the resource and the associated transaction and then POST another resource to "activate" this transaction. But I believe the concept of transactional resources are somehow different.
Let me give you a simple example:
In a system you have a "customer" resource and his address with customer as the primary (or named) resource and the address being the subordinate address. For this example, let us assume we have a customer with a customerId of 1234. The URI to reach this customer would be /api/customer/1234. So, how would you now just update the customer's address without having to update the entire customer resource? You could define a "transaction resource" called "updateCustomerAddress". With that you would then POST the updated customer address data (JSON or even XML) to the following URI: POST /api/customer/1234/updateCustomerAddress. The service would then create this new transactional resource to be applied to the customer with customerId=1234. Once the transaction resource has been created, the call would return with 201, although the actual change may not have been applied to the customer resource. So a subsequent GET /api/customer/1234 may return the old address, or already the new and updated address. This supports well an asynchronous model for updating subordinate resources, or even named resources.
And what would we do with the created transactional resource? It would be completely opaque to the client and discarded as soon as the transaction has been completed. So the call may actually not return a URI of the transactional resource since it may have disappeared already by the time a client would try to access it.
As you can see, transactional resources should not require two HTTP calls to a service and can be done in just one.

RFC 2616 is obsolete. Please read RFC 723* instead, in particular https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.3.

Related

REST delete multiple items in the batch

I need to delete multiple items by id in the batch however HTTP DELETE does not support a body payload.
Work around options:
1. #DELETE /path/abc?itemId=1&itemId=2&itemId=3 on the server side it will be parsed as List of ids and DELETE operation will be performed on each item.
2. #POST /path/abc including JSON payload containing all ids. { ids: [1, 2, 3] }
How bad this is and which option is preferable? Any alternatives?
Update: Please note that performance is a key here, it is not an option execute delete operation for each individual id.
Along the years, many people fell in doubt about it, as we can see in the related questions here aside. It seems that the accepted answers ranges from "for sure do it" to "its clearly mistreating the protocol". Since many questions was sent years ago, let's dig into the HTTP 1.1 specification from June 2014 (RFC 7231), for better understanding of what's clearly discouraged or not.
The first proposed workaround:
First, about resources and the URI itself on Section 2:
The target of an HTTP request is called a "resource". HTTP does not limit the nature of a resource; it merely defines an interface that might be used to interact with resources. Each resource is identified by a Uniform Resource Identifier (URI).
Based on it, some may argue that since HTTP does not limite the nature of a resource, a URI containing more than one id would be possible. I personally believe it's a matter of interpretation here.
About your first proposed workaround (DELETE '/path/abc?itemId=1&itemId=2&itemId=3') we can conclude that it's something discouraged if you think about a resource as a single document in your entity collection while being good to go if you think about a resource as the entity collection itself.
The second proposed workaround:
About your second proposed workaround (POST '/path/abc' with body: { ids: [1, 2, 3] }), using POST method for deletion could be misleading. The section Section 4.3.3 says about POST:
The POST method requests that the target resource process the representation enclosed in the request according to the resource's own specific semantics. For example, POST is used for the following functions (among others): Providing a block of data, such as the fields entered into an HTML form, to a data-handling process; Posting a message to a bulletin board, newsgroup, mailing list, blog, or similar group of articles; Creating a new resource that has yet to be identified by the origin server; and Appending data to a resource's existing representation(s).
While there's some space for interpretation about "among others" functions for POST, it clearly conflicts with the fact that we have the method DELETE for resources removal, as we can see in Section 4.1:
The DELETE method removes all current representations of the target resource.
So I personally strongly discourage the use of POST to delete resources.
An alternative workaround:
Inspired on your second workaround, we'd suggest one more:
DELETE '/path/abc' with body: { ids: [1, 2, 3] }
It's almost the same as proposed in the workaround two but instead using the correct HTTP method for deletion. Here, we arrive to the confusion about using an entity body in a DELETE request. There are many people out there stating that it isn't valid, but let's stick with the Section 4.3.5 of the specification:
A payload within a DELETE request message has no defined semantics; sending a payload body on a DELETE request might cause some existing implementations to reject the request.
So, we can conclude that the specification doesn't prevent DELETE from having a body payload. Unfortunately some existing implementations could reject the request... But how is this affecting us today?
It's hard to be 100% sure, but a modern request made with fetch just doesn't allow body for GET and HEAD. It's what the Fetch Standard states at Section 5.3 on Item 34:
If either body exists and is non-null or inputBody is non-null, and request’s method is GET or HEAD, then throw a TypeError.
And we can confirm it's implemented in the same way for the fetch pollyfill at line 342.
Final thoughts:
Since the alternative workaround with DELETE and a body payload is let viable by the HTTP specification and is supported by all modern browsers with fetch and since IE10 with the polyfill, I recommend this way to do batch deletes in a valid and full working way.
It's important to understand that the HTTP methods operate in the domain of "transferring documents across a network", and not in your own custom domain.
Your resource model is not your domain model is not your data model.
Alternative spelling: the REST API is a facade to make your domain look like a web site.
Behind the facade, the implementation can do what it likes, subject to the consideration that if the implementation does not comply with the semantics described by the messages, then it (and not the client) are responsible for any damages caused by the discrepancy.
DELETE /path/abc?itemId=1&itemId=2&itemId=3
So that HTTP request says specifically "Apply the delete semantics to the document described by /path/abc?itemId=1&itemId=2&itemId=3". The fact that this document is a composite of three different items in your durable store, that each need to be removed independently, is an implementation details. Part of the point of REST is that clients are insulated from precisely this sort of knowledge.
However, and I feel like this is where many people get lost, the metadata returned by the response to that delete request tells the client nothing about resources with different identifiers.
As far as the client is concerned, /path/abc is a distinct identifier from /path/abc?itemId=1&itemId=2&itemId=3. So if the client did a GET of /path/abc, and received a representation that includes itemIds 1, 2, 3; and then submits the delete you describe, it will still have within its own cache the representation that includes /path/abc after the delete succeeds.
This may, or may not, be what you want. If you are doing REST (via HTTP), it's the sort of thing you ought to be thinking about in your design.
POST /path/abc
some-useful-payload
This method tells the client that we are making some (possibly unsafe) change to /path/abc, and if it succeeds then the previous representation needs to be invalidated. The client should repeat its earlier GET /path/abc request to refresh its prior representation rather than using any earlier invalidated copy.
But as before, it doesn't affect the cached copies of other resources
/path/abc/1
/path/abc/2
/path/abc/3
All of these are still going to be sitting there in the cache, even though they have been "deleted".
To be completely fair, a lot of people don't care, because they aren't thinking about clients caching the data they get from the web server. And you can add metadata to the responses sent by the web server to communicate to the client (and intermediate components) that the representations don't support caching, or that the results can be cached but they must be revalidated with each use.
Again: Your resource model is not your domain model is not your data model. A REST API is a different way of thinking about what's going on, and the REST architectural style is tuned to solve a particular problem, and therefore may not be a good fit for the simpler problem you are trying to solve.
That doesn’t mean that I think everyone should design their own systems according to the REST architectural style. REST is intended for long-lived network-based applications that span multiple organizations. If you don’t see a need for the constraints, then don’t use them. That’s fine with me as long as you don’t call the result a REST API. I have no problem with systems that are true to their own architectural style. -- Fielding, 2008

Correct URI for REST calls to create & delete relationship between two entities

I need to create and delete relationships between two different entities through REST calls.
Let's say user A (the current user) is going to follow or un-follow user B. The existence of a follow relationship is denoted by the presense or absence of the Follow relationship entity (Follow(B, A) means that A follows B).
Should the calls be:
POST /api/follow/{user-b-id} // to follow
and
DELETE /api/follow/{user-b-id} // to un-follow
where the identity of user A is deduced from the token sent along to authenticate the call.
Or should they be based on the action being carried out:
POST /api/follow/{user-b-id} // to follow
and
POST /api/unfollow/{user-b-id} // to un-follow
I have doubts about which methods (POST, PUT, DELETE etc.) to use and whether the URIs should reference the action (verb?) being carried out. Since I am re-designing an API, I want to get as close to "correct" (yes, I do realize that's a little subjective) REST API design as makes sense for my project.
Correct URI for REST calls to create & delete relationship between two entities
REST doesn't care what spelling you use for your URI; /182b2559-5772-40fd-af84-297e3a4b4bcb is a perfectly find URI as far as REST is concerned. The constraints on spelling don't come from REST, but instead whatever the local coding standard is.
A common standard is to consider a collection resource that includes items; such that adding an item resource to a collection is modeled by sending a message to the collection resource, and removing the item resource is modeled by sending a message to the item resource. The Atom Publishing Protocol, for instance, works this way - a POST to a collection resource adds a new entry, a DELETE to the item resource removes the entry.
Following this approach, the usual guideline would be that the collection resource is named for the collection, with the item resources subordinate to it.
// Follow
POST /api/relationships
// Unfollow
DELETE /api/relationships/{id}
id here might be user-b-id or it might be something else; one of the core ideas in REST is that the server is the authority for its URI space; the server may embed information into the URI, at it's own discretion and for its own exclusive use. Consumers are expected to treat the identifiers as opaque units.
I have doubts about which methods (POST, PUT, DELETE etc.) to use and whether the URIs should reference the action (verb?) being carried out.
It's sometimes helpful to keep in mind that the world wide web has been explosively successful even though the primary media type in use (HTML) supports only GET and POST natively.
Technically, you can use POST for everything. The HTTP uniform interface gives you carte blanche.
PUT, DELETE, PATCH can all be considered specializations of POST: unsafe methods with additional semantics. PUT suggests idempotent replace semantics, DELETE suggests remove, PATCH for an all or nothing update.
Referencing the action isn't wrong (REST doesn't care about spelling, remember), but it does suggest that you are thinking about the effects of the messages rather than about the resources that the messages are acting upon.
JSON Patch may be a useful example to keep in mind. The operations (add, remove, replace, and so on) are encoded into the patch document, the URI specifies which resource should be modified with those operations.
Jim Webber expressed the idea this way - HTTP is a document transfer application. Useful work is a side effect of exchanging documents. The URI identify the documents that are used to navigate your integration protocol.
So if you need consistent, human readable spellings for your URI, one way to achieve this is by articulating that protocol and the documents from which it is composed.
Would it be correct to say that PUT is for replacing the entire entity (resource) and PATCH if for modifying a sub-set of the entity's (resource's) properties?
Not quite. PUT means the message-body of the request is a replacement representation of the resource. PATCH means the message-body of the request is a patch document.
There's nothing in the semantics that prevents you from using PUT to change a single element in a large document, or PATCH to completely replace a representation.
But a client might prefer PATCH to PUT because the patch document is much smaller than the replacement representation. Or it might prefer PUT to PATCH because the message transport is unreliable, and the idempotent semantics of PUT make retry easier.
The right decision also depends on the way other resources are mapped in the project. Same style is better, however if there's no preference, the following could have the advantage of being easier to implement and remember
POST /api/follow/{user-b-id} // to follow
and
POST /api/unfollow/{user-b-id} // to un-follow
I would say, use the delete verb if your are passing in the id of the relationship/link/follow from a to b. This way, it is fairly explicit your route is doing. It is accepting an id of some object and deleting it.
However, in your example, you are passing in the id of the other user, then you have to do some logic to find the relationship/link/follow object between the two and delete it. In my mind, this is more of a post than a delete because of the additional work you have to do. Regardless, it seems fairly subjective as to which one is "right",

How to model a CANCEL action in a RESTful way?

We are currently in the process of wrangling smaller services from our monoliths. Our domain is very similar to a ticketing system. We have decided to start with the cancellation process of the domain.
Our cancel service has as simple endpoint "Cancel" which takes in the id of the ticket. Internally, we retrieve the id, perform some operations related to cancel on it and update the state of the entity in the store. From the store's perspective the only difference between a cancelled ticket and a live ticket are a few properties.
From what I have read, PATCH seems to be the correct verb to be used in this case, as am updating only a simple property in the resource.
PATCH /api/tickets/{id}
Payload {isCancelled: true}
But isCancelled is not an actual property in the entity. Is it fair to send properties in the payload that are not part of the entity or should I think of some other form of modeling this request? I would not want to send the entire entity as part of the payload, since it is large.
I have considered creating a new resource CancelledTickets, but in our domain we would never have the need to a GET on cancelled tickets. Hence stayed away from having to create a new resource.
Exposing the GET interface of a resource is not compulsory.
For example, use
PUT /api/tickets/{id}/actions/cancel
to submit the cancellation request. I choose PUT since there would be no more than one cancellation request in effect.
Hope it be helpful.
Take a look what exactly is RESTful way. No matter if you send PATCH request with isCancelled as payload or even DELETE if you want tickets to disappear. It's still RESTful.
Your move depends on your needs. As you said
I have considered creating a new resource CancelledTickets, but in our
domain we would never have the need to a GET on cancelled tickets.
I would just send DELETE. You don't have to remove it physically. If it's possible to un-cancel, then implement isCancelled mechanism. It's just question of taste.
REST is basically a generalization of the browser based Web. Any concepts you apply for the Web can also be applied to REST.
So, how would you design a cancel activity in a Web page? You'd probably have a table row with certain activities like edit and delete outlined with icons and mouse-over text that on clicking invoke a URI on the server and lead to a followup state. You are not that much interested how the URI of that button might look like or if a PATCH or DELETE command is invoked in the back. You are just interested that the request is processed.
The same holds true if you want to perform the same via REST. Instead of images that hint the user that an edit or cancel activity is performed on an entry, a meaningful link-relation name should be used to hint the client about the possiblities. In your case this might be something like reserve new tickets, edit reservation or cancel reservation. Each link relation name is accompanied by a URL the client can invoke if he wants to perform one of the activities. The exact characters of the URI is not of importance here to the client also. Which method to invoke might either be provided already in the response (as further accompanying field) or via the media type the response was processed for. If neither the media type nor an accompanying field gives a hint on which HTTP operation to use an OPTIONS request may be issued on the URI beforehand. The rule of thumb here is, the server should teach a client on how to achieve something in the end.
By following such a concept you decouple a client from the API and make it robust to changes. Instead of a client generating a URI to invoke the client is fed by the server with possible URIs to invoke. If the server ever changes its iternal URI structure a client using one of the provided URIs will still be able to invoke the service as it simply used one of the URIs provided by the server. Which one to use is determined by analyzing the link relation name that hints the client when to invoke such URI. As mentioned above, such link relation names need to be defined somewhere. But this is exactly what Fielding claimed back in 2008 by:
A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types. (Source)
Which HTTP operation to choose for canceling a ticket/reservation may depend on your desing. While some of the answers recommended DELETE RFC 7231 states that only the association between the URI and the resource is removed and no gurantee is given that the actual resource is also being removed here as well. If you design a system where a cancelation might be undone, then DELETE is not the right choice for you as the mapping of the URI to the resource should not exist further after handling a DELETE request. If you, however, consider a cancelation to also lead to a removal of the reservation then you MAY use DELETE.
If you model your resource in a way that maintains the state as property within the resource, PATCHing the resource might be a valid option. However, simply sending something like state=canceled is probably not enough here as PATCH is a calculation of steps done by the client in order to transform a certain resource (or multipe resources) into a desired target state. JSON Patch might give a clue on how this might be done. A further note needs to be done on the atomicy requirement PATCH has. Either all of the instructions succeed or none at all.
As also PUT was mentioned in one of the other answers. PUT has the semantics of replacing the current representation available at the given URI with the one given in the request' payload. The server is further allowed to either reject the content or transform it to a more suitable representation and also affect other resources as well, i.e. if they mimic a version history of the resource.
If neither of the above mentioned operations really satisfies your needs you should use POST as this is the all-purpose, swiss-army-knife toolkit of HTTP. While this operation is usually used to create new resources, it isn't limited to it. It should be used in any situation where the semantics of the other operations aren't applicable. According to the HTTP specification
The POST method requests that the target resource process the representation enclosed in the request according to the resource's own specific semantics.
This is basically the get-free-out-of-jail card. Here you can literally process anything at the server according to your own rules. If you want to cancel or pause something, just do it.
I highly discourage to use GET for creating, altering or canceling/removing something. GET is a safe operation and gurantees any invoking client that it wont alter any state for the invoked resource on the server. Note that it might have minor side-effects, i.e. logging, though the actual state should be unaffected by an invocation. This is a property Web crawler rely on. They will simply invoke any URI via GET and learn the content of the received response. And I assume you don't want Google (or any other crawler) to cancel all of your reservations, or do you?
As mentioned above, which HTTP operation you should use depends on your design. DELETE should only be used if you are also going to remove the representation, eventhough the spec does not necessarily require this, but once the URI mapping to the resource is gone, you basically have no way to invoke this resource further (unless you have created a further URI mapping first, of course). If you designed your resource to keep the state within a property I'd probably go for PATCH but in general I'd basically opt for POST here as here you have all the choices at your hands.
I would suggest having a state resource.
This keeps things RESTful. You have your HTTP method acting as the verb. The state part of the URI is a noun. Then your request body is simple and consistent with the URI.
The only thing I don't like about this is the value of state requires documentation, meaning what states are there? This could be solved via the API by providing possible states on a meta resource or part of the ticket body in meta object.
PUT /api/tickets/:id/state
{state: "canceled"}
GET /api/meta/tickets/state
// returns
[
"canceled",
...
]
GET /api/tickets/:id
{
id: ...
meta: {
states: [
"canceled",
...
]
}
}
For modelling CANCEL Action in Restful way :
Suppose we have to delete a note in DB by providing noteId(Note's ID) and Note is a pojo
1] At controller :
#DeleteMapping(value="/delete/{noteId}")
public ResponseEntity<Note> deleteNote( #PathVariable Long noteId)
{
noteServiceImpl.deleteNote(noteId);
return ResponseEntity.ok().build();
}
2]Service Layer :
#Service
public class NoteServiceImpl {
#Autowired
private NotesRepository notesDao;
public void deleteNote(Long id) {
notesDao.delete(id);
}
}
3] Repository layer :
#Repository
public interface NotesRepository extends CrudRepository<Note, Long> {
}
and in 4] postman : http://localhost:8080/delete/1
So we have deleted note Id 1 from DB by CANCEL Action

Why use two step approach to deleting multiple items with REST

We all know the 'standard' way of deleting a single item via REST is to send a single DELETE request to a URI example.com/Items/666. Grand, let's move on to deleting many at once. As we do not require atomic deleting (or true transaction, ie all or nothing) we could just tell the client 'tough luck, make many requests' but that's not very nice is it. So we need a way to allow a client to request many 'Items' be deleted at once.
From my understanding, the 'typical' solution to this problem is a 'two step' approach. First the client POSTs a list of item IDs and is returned a URI such as example.com/Items/Collection/1. Once that collection is created, they call DELETE on it.
Now, I see that this works just fine, except to me, it is a bad solution. Firstly, you are forcing the client to make two requests to accommodate the server. Secondly, 'I thought DELETE was supposed to delete an Item?', shouldn't calling DELETE on this URI effectively cancel the transaction (it's not a true transaction though), how would we even cancel it? Really would be better if there was some form 'EXECUTE' action, but I can't rock the boat that much. It also forces the server to have to consider 'the JSON that was POSTed looks more like a request to modify these Items, but the request was DELETE... so I guess I will delete them'. This approach also starts to impose a sort of state on the client/server, not a true state I will admit, but it is sort of.
In my opinion, a better solution would be to simply call DELETE on example.com/Items (or maybe example.com/Items/Collection to imply this is a multiple delete) and pass JSON data containing a list of IDs that you wish to delete. As far as I can see, this basically solves all the problems the first method had. It is easier to use as a client, reduces the work the server has to do, is truly stateless, is more semantic.
I would really appreciate the feed back on this, am I missing something about REST that makes my solution to this problem unrealistic? I would also appreciate links to articles, especially if they compare these two methods; I am aware this is not normally approved of for SO. I need to be able to disprove that only the first method is truly RESTfull, prove that the second approach is a viable solution. Of course, if I am barking up the wrong tree do tell me.
I have spent the last week or so reading a fair bit on REST, and to the best of my understanding, it would be wrong to describe either of these solutions as 'RESTfull', rather you should say that 'neither solution goes against what REST means'.
The short answer is simply that REST, as laid out in Roy Fielding's dissertation (See chapter 5), does not cover the topic of how to go about deleting resources, singular or multiple, in a REST manor. That's right, there is no 'correct RESTful way to delete a resource'... well, not quite.
REST itself does not define how delete a resource, but it does define that what ever protocol you are using (remember that REST is not a protocol) will dictate the how perform these actions. The protocol will usually be HTTP; 'usually' being the key word as Fielding will point out, REST is not synonymous with HTTP.
So we look to HTTP to say which method is 'right'. Sadly, as far as HTTP is concerned, both approaches are viable. Yes 'viable'. HTTP will allow a client to send a POST request with a payload (to create a collection resource), and then call a DELETE method on this new collection to delete the resources; it will also allow you to send the data within the payload of a single DELETE method to delete the list of resources. HTTP is simply the medium by which you send requests to the server, it would be up to the server to respond appropriately. To me, the HTTP protocol seems to be rather open to interpretation in places, but it does seem to lay down fairly clear guide lines for what actions mean, how they should be dealt with and what response should be given; it's just it is a 'you should do this' rather than 'you must do this', but perhaps I am being a little pedantic on the wording.
Some people would argue that the 'two stage' approach cannot possibly be 'REST' as the server has to store a 'state' for the client to perform the second action. This is simply a misunderstanding of some part. It must be understood that neither the client nor the server is storing any 'state' information about the other between the list being POSTed and then subsequently being DELETEd. Yes, the list must have been created before it can deleted, but the server does not remember that it was client alpha that made this list (such an approach would allow the client to simply call 'DELETE' as the next request and the server remembers to use that list, this would not be stateless at all) as such, the client must tell the server to DELETE that specific list, the list it was given a specific URI for. If the client attempted to DELETE a collection list that did not already exist it would simply be told 'the resource can not be found' (the classic 404 error most likely). If you wish to claim that this two step approach does maintain a state, you must also claim that to simply GET an URI requires a state, as the URI must first exist. To claim that there is this 'state' persisting is misunderstanding what 'state' means. And as further 'proof' that such a two stage approach is indeed stateless, you could quite happily have client alpha POST the list and later client beta (without having had any communication with the other client) call DELETE on the list resources.
I think it can stand rather self evident that the second option, of just sending the list in the payload of the DELETE request, is stateless. All the information required to complete the request is stored completely within the one request.
It could be argued though that the DELETE action should only be called on a 'tangible' resource, but in doing so you are blatantly ignoring the REpresentational part of REST; It's in the name! It is the representational aspect that 'permits' URIs such as http://example.com/myService/timeNow, a URI that when 'got' will return, dynamically, the current time, with out having to load some file or read from some database. It is a key concept that the URIs are not mapping directly to some 'tangible' piece of data.
There is however one aspect of that stateless nature that must be questioned. As Fielding describes the 'client-stateless-server' in section 5.1.3, he states:
We next add a constraint to the client-server interaction: communication must
be stateless in nature, as in the client-stateless-server (CSS) style of
Section 3.4.3 (Figure 5-3), such that each request from client to server must
contain all of the information necessary to understand the request, and
cannot take advantage of any stored context on the server. Session state is
therefore kept entirely on the client.
The key part here in my eyes is "cannot take advantage of any stored context on the server". Now I will grant you that 'context' is somewhat open for interpretation. But I find it hard to see how you could consider storing a list (either in memory or on disk) that will be used to give actual useful meaning would not violate this 'rule'. With out this 'list context' the DELETE operation makes no sense. As such, I can only conclude that making use of a two step approach to perform an action such as deleting multiple resources cannot and should not be considered 'RESTfull'.
I also begrudge somewhat the effort that has had to be put into finding arguments either way for this. The Internet at large seems to have become swept up with this idea the the two step approach is the 'RESTfull' way doing such actions, with the reasoning 'it is the RESTfull way to do it'. If you step back for a moment from what everybody else is doing, you will see that either approach requires sending the same list, so it can be ignored from the argument. Both approaches are 'representational' and 'stateless'. The only real difference is that for some reason one approach has decided to require two requests. These two requests then come with follow up questions, such as how 'long do you keep that data for' and 'how does a client tell a server that it no longer wants that this collection, but wishes to keep the actual resources it refers to'.
So I am, to a point, answering my question with the same question, 'Why would you even consider a two step approach?'
IMO:
HTTP DELETE on existing collection to delete all of its member seems fine. Creating the collection just to delete all of the member sounds odd. As you yourself suggest, just pass IDs of the to be deleted items using JSON (or any other payload format). I think that the server should try to make multiple deletes an internal transaction though.
I would argue that HTTP already provides a method of deleting multiple items in the form of persistent connections and pipelining. At the HTTP protocol level it is absolutely fine to request idempotent methods like DELETE in a pipelined way - that is, send all the DELETE requests at once on a single connection and wait for all the responses.
This may be problematic for an AJAX client running in a browser since few browsers have pipelining support enabled by default. This is not the fault of HTTP, though, it is the fault of those specific clients.

RESTful resource - accepts a list of objects

I'm building a collection of RESTful resources that work like the following: (I'll use "people" as an example):
GET /people/{key}
- returns a person object (JSON)
GET /people?first_name=Bob
- returns a list of person objects who's "first_name" is "Bob" (JSON)
PUT /people/{key}
- expects a person object in the payload (JSON), updates the person in the
datastore with the {key} found in the URL parameter to match the payload.
If it is a new object, the client specifies the key of the new object.
I feel pretty comfortable with the design so far (although any input/criticism is welcome).
I'd also like to be able to PUT a list of people, however I'm not confident in the RESTfulness of my design. This is what I have in mind:
PUT /people
- expects a list of objects in JSON form with keys included in the object
("key":"32948"). Updates all of the corresponding objects in the datastore.
This operation will be idempotent, so I'd like to use "PUT". However its breaking a rule because a GET request to this same resource will not return the equivalent of what the client just PUT, but would rather return all "people" objects (since there would be no filters on the query). I suspect there are also a few other rules that might be being broken here.
Someone mentioned the use of a "PATCH" request in an earlier question that I had: REST resource with a List property
"PATCH" sounds fantastic, but I don't want to use it because its not in wide use yet and is not compatible with a lot of programs and APIs yet.
I'd prefer not to use POST because POST implies that the request is not idempotent.
Does anyone have any comments / suggestions?
Follow-up:::
While I hesitated to use POST because it seems to be the least-common-denominator, catch-all for RESTful operations and more can be said about this operation (specifically that it is idempotent), PUT cannot be used because its requirements are too narrow. Specifically: the resource is not being completely re-written and the equivalent resource is not being sent back from a GET request to the same resource. Using a PUT with properties outside of it's specifications can cause problems when applications, api's, and/or programmers attempt to work with the resource and are met with unexpected behavior from the resource.
In addition to the accepted answer, Darrel Miller had an excellent suggestion if the operation absolutely had to be a PUT and that was to append a UUID onto the end of the resource path so an equivalent GET request will return the equivalent resource.
POST indicates a generic action other than GET, PUT, and DELETE (the generic hashtable actions). Because the generic hashtable actions are inappropriate, use POST. The semantics of POST are determined by the resource to which an entity is POSTed. This is unlike the semantics of the generic hashtable methods, which are well-known.
POST /people/add-many HTTP/1.1
Host: example.com
Content-Type: application/json
[
{ "name": "Bob" },
{ "name": "Robert" }
]
Using PUT is definitely the wrong verb in this case. POST is meant to do exactly what you are asking. From the HTTP specification:
The fundamental difference between the POST and PUT requests is reflected in the different meaning of the Request-URI. The URI in a POST request identifies the resource that will handle the enclosed entity. That resource might be a data-accepting process, a gateway to some other protocol, or a separate entity that accepts annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user agent knows what URI is intended and the server MUST NOT attempt to apply the request to some other resource...
As such, if you want to update multiple resources in a single call, you have to use POST.
Just be cause PUT is required to be idempotent and POST is not, does not mean that POST cannot be idempotent. Your choice of HTTP verb should not be based on that, but based on the relationship of the requested resource and the resource acted upon. If your application is directly handling the resource requested, use PUT. If it is acting on some other resource (or resources, as in your case), use POST.
I really don't see any easy way you could use PUT to create an arbitrary set of people. Unless, you are prepared to have the client generate a GUID and do something like,
PUT /PeopleList/{1E8157D6-3BDC-43b7-817D-C3DA285DD606}
On the server side you could take the people from the list and add them to the /People resource.
A slight variation to this approach would be to get the server to include a link such as
<link rel="AddList" href="/PeopleList/{1E8157D6-3BDC-43b7-817D-C3DA285DD606}"/>
in the People resource. The client would need to know that it needs to PUT a list of people to the AddList link. The server would need to make sure that each time it renders the /People resource it creates a new url for the AddList link.
Regarding Darren Miller's suggestion of using PUT to a GUID (I can't comment...), the point of using PUT would be to achieve idempotency for the operation. The litmus test if idempotency would be this conversation between the client and server:
PUT /PeopleList/{1E8157D6-3BDC-43b7-817D-C3DA285DD606}
204 NO CONTENT (indicates that it all went well)
client loses connection and doesn't see the 204
client automatically retries
PUT /PeopleList/{1E8157D6-3BDC-43b7-817D-C3DA285DD606}
How would the server differentiate the two? If the GUID is "used up" so to speak then the server would have to respond 404 or 410. This introduces a tiny bit of conversational state on the server to remember all the GUIDs that have been used.
Two clients would often see the same I guess, because of caching or simply keeping stale responses around.
I think a smart solution is to use POST to create an (initially empty, short lived) holding area for a resource to which you can PUT, i.e. clients need to POST to create the GUID resource instead of discovering it via a link:
POST /PeopleList/CreateHoldingArea
201 CREATED and Location: /PeopleList/{1E8157D6-3BDC-43b7-817D-C3DA285DD606}
PUT /PeopleList/{1E8157D6-3BDC-43b7-817D-C3DA285DD606}
This would mean that the lost idempotency would not result in much overhead; clients simply create new GUIDs (by POSTing) if they didn't see the initial 201 CREATED response. The "tiny bit of conversational state" would now only be the created but not yet used holding areas.
The ideal solution would of course not require any conversational state on the server, but it eludes me.