These two long numbers are the same except for the last digit.
test = [];
test(1) = 33777100285870080;
test(2) = 33777100285870082;
but the last digit is lost when the numbers are put in the array:
unique(test)
ans = 3.3777e+16
How can I prevent this? The numbers are ID codes and losing the last digit is screwing everything up.
Matlab uses 64-bit floating point representation by default for numbers. Those have a base-10 16-digit precision (more or less) and your numbers seem to exceed that.
Use something like uint64 to store your numbers:
> test = [uint64(33777100285870080); uint64(33777100285870082)];
> disp(test(1));
33777100285870080
> disp(test(2));
33777100285870082
This is really a rounding error, not a display error. To get the correct strings for output purposes, use int2str, because, again, num2str uses a 64-bit floating point representation, and that has rounding errors in this case.
To add more explanation to #rubenvb's solution, your values are greater than flintmax for IEEE 754 double precision floating-point, i.e, greater than 2^53. After this point not all integers can be exactly represented as doubles. See also this related question.
Related
I have an array of integers (they are actually epochs) and I would like to check if they can be represented in double precision floating point without rounding issues.
So I have a large n rows by 1 column array like this:
1104757200
1104757320
1135981260
1135981560
1135982040
1135982280
1135982340
1135982580
1135982880
1135983420
1135984020
1135984140
1135984200
1135985100
1135985340
And I would like to know if they can be stored without losing precision as double precision floating point numbers.
The output could be another array -vector- with 0 or 1 depending on if the number can be represented without losing precision or not.
Any tips on how to do that check in Matlab would be welcomed.
I noticed that some floating points converted differently. This question helps me about floating points however still don't know why this happens? I added two screenshots from debug mode about the sample code. Example values : 7.37 and 9.37. Encountered it in swift and surely swift uses IEEE 754 floating point standard Pls explain how this happens? How conversion ended differently ?
if let text = textField.text {
if let number = formatter.number(from: text) {
return Double(number)
}
return nil
}
Double floating point numbers are stored in base-2, and cannot represent all decimals exactly.
In this case, 7.37 and 9.37 are rounded to the nearest floating point numbers which are 7.37000000000000010658141036401502788066864013671875 and 9.3699999999999992184029906638897955417633056640625, respectively.
Of course, such decimal representations are too unwieldy for general use, so programming languages typically print shorter approximate decimal representations. Two popular choices are
The shortest string that will be correctly rounded to the original number (which in this case are 7.37 and 9.37, respectively).
Rounded 17 significant digits, which is guaranteed to give the correct value when converting back to binary.
These appear to correspond to the 2 debug output values that you are seeing.
I am reading some data from a CSV file, and I have custom code to parse string values into different data types. For numbers, I use:
val format = NumberFormat.getNumberInstance()
which returns a DecimalFormat, and I call parse function on that to get my numeric value. DecimalFormat has arbitrary precision, so I am not losing any precision there. However, when the data is pushed into a Spark DataFrame, it is stored using DoubleType. At this point, I am expecting to see some precision issues, however I do not. I tried entering values from 0.1, 0.01, 0.001, ..., 1e-11 in my CSV file, and when I look at the values stored in the Spark DataFrame, they are all accurately represented (i.e. not like 0.099999999). I am surprised by this behavior since I do not expect a double value to store arbitrary precision. Can anyone help me understand the magic here?
Cheers!
There are probably two issues here: the number of significant digits that a Double can represent in its mantissa; and the range of its exponent.
Roughly, a Double has about 16 (decimal) digits of precision, and the exponent can cover the range from about 10^-308 to 10^+308. (Obviously, the actual limits are set by the binary representation used by the ieee754 format.)
When you try to store a number like 1e-11, this can be accurately approximated within the 56 bits available in the mantissa. Where you'll get accuracy issues is when you want to subtract two numbers that are so close together that they only differ by a small number of the least significant bits (assuming that their mantissas have been aligned shifted so that their exponents are the same).
For example, if you try (1e20 + 2) - (1e20 + 1), you'd hope to get 1, but actually you'll get zero. This is because a Double does not have enough precision to represent the 20 (decimal) digits needed. However, (1e100 + 2e90) - (1e100 + 1e90) is computed to be almost exactly 1e90, as it should be.
I'm aware that double is the default data-type in MATLAB.
When you compare two double numbers that have no floating part, MATLAB is accurate upto the 17th digit place in my testing.
a=12345678901234567 ; b=12345678901234567; isequal(a,b) --> TRUE
a=123456789012345671; b=123456789012345672; isequal(a,b) --> printed as TRUE
I have found a conservative estimate to be use numbers (non-floating) upto only 13th digit as other functions can become unreliable after it (such as ismember, or the MEX functions ismembc etc).
Is there a similar cutoff for floating values? E.g., if I use shares-outstanding for a company which can be very very large with decimal places, when do I start losing decimal accuracy?
a = 1234567.89012345678 ; b = 1234567.89012345679 ; isequal(a,b) --> printed as TRUE
a = 123456789012345.678 ; b = 123456789012345.677 ; isequal(a,b) --> printed as TRUE
isequal may not be right tool to use for comparing such numbers. I'm more concerned about up to how many places should I trust my decimal values once the integer part of a number starts growing?
It's usually not a good idea to test the equality of floating-point numbers. The behavior of binary floating-point numbers can differ drastically from what you may expect from base-10 decimals. Consider the example:
>> isequal(0.1, 0.3/3)
ans =
0
Ultimately, you have 53 bits of precision. This means that integers can be represented exactly (with no loss in accuracy) up to the number 253 (which is a little over 9 x 1015). After that, well:
>> (2^53 + 1) - 2^53
ans =
0
>> 2^53 + (1 - 2^53)
ans =
1
For non-integers, you are almost never going to be representing them exactly, even for simple-looking decimals such as 0.1 (as shown in that first example). However, it still guarantees you at least 15 significant figures of precision.
This means that if you take any number and round it to the nearest number representable as a double-precision floating point, then this new number will match your original number at least up to the first 15 digits (regardless of where these digits are with respect to the decimal point).
You might want to use variable precision arithmetics (VPA) in matlab. It computes expressions exactly up to a given digit count, which may be quite large. See here.
Check out the MATLAB function flintmax which tells you the maximum consecutive integers that can be stored in either double or single precision. From that page:
flintmax returns the largest consecutive integer in IEEEĀ® double
precision, which is 2^53. Above this value, double-precision format
does not have integer precision, and not all integers can be
represented exactly.
I use mod() to compare if a number's 0.01 digit is 2 or not.
if mod(5.02*100, 10) == 2
...
end
The result is mod(5.02*100, 10) = 2 returns 0;
However, if I use mod(1.02*100, 10) = 2 or mod(20.02*100, 10) = 2, it returns 1.
The result of mod(5.02*100, 10) - 2 is
ans =
-5.6843e-14
Could it be possible that this is a bug for matlab?
The version I used is R2013a. version 8.1.0
This is not a bug in MATLAB. It is a limitation of floating point arithmetic and conversion between binary and decimal numbers. Even a simple decimal number such as 0.1 has cannot be exactly represented as a binary floating point number with finite precision.
Computer floating point arithmetic is typically not exact. Although we are used to dealing with numbers in decimal format (base10), computers store and process numbers in binary format (base2). The IEEE standard for double precision floating point representation (see http://en.wikipedia.org/wiki/Double-precision_floating-point_format, what MATLAB uses) specifies the use of 64 bits to represent a binary number. 1 bit is used for the sign, 52 bits are used for the mantissa (the actual digits of the number), and 11 bits are used for the exponent and its sign (which specifies where the decimal place goes).
When you enter a number into MATLAB, it is immediately converted to binary representation for all manipulations and arithmetic and then converted back to decimal for display and output.
Here's what happens in your example:
Convert to binary (keeping only up to 52 digits):
5.02 => 1.01000001010001111010111000010100011110101110000101e2
100 => 1.1001e6
10 => 1.01e3
2 => 1.0e1
Perform multiplication:
1.01000001010001111010111000010100011110101110000101 e2
x 1.1001 e6
--------------------------------------------------------------
0.000101000001010001111010111000010100011110101110000101
0.101000001010001111010111000010100011110101110000101
+ 1.01000001010001111010111000010100011110101110000101
-------------------------------------------------------------
1.111101011111111111111111111111111111111111111111111101e8
Cutting off at 52 digits gives 1.111101011111111111111111111111111111111111111111111e8
Note that this is not the same as 1.11110110e8 which would be 502.
Perform modulo operation: (there may actually be additional error here depending on what algorithm is used within the mod() function)
mod( 1.111101011111111111111111111111111111111111111111111e8, 1.01e3) = 1.111111111111111111111111111111111111111111100000000e0
The error is exactly -2-44 which is -5.6843x10-14. The conversion between decimal and binary and the rounding due to finite precision have caused a small error. In some cases, you get lucky and rounding errors cancel out and you might still get the 'right' answer which is why you got what you expect for mod(1.02*100, 10), but In general, you cannot rely on this.
To use mod() correctly to test the particular digit of a number, use round() to round it to the nearest whole number and compensate for floating point error.
mod(round(5.02*100), 10) == 2
What you're encountering is a floating point error or artifact, like the commenters say. This is not a Matlab bug; it's just how floating point values work. You'd get the same results in C or Java. Floating point values are "approximate" types, so exact equality comparisons using == without some rounding or tolerance are prone to error.
>> isequal(1.02*100, 102)
ans =
1
>> isequal(5.02*100, 502)
ans =
0
It's not the case that 5.02 is the only number this happens for; several around 0 are affected. Here's an example that picks out several of them.
x = 1.02:1000.02;
ix = mod(x .* 100, 10) ~= 2;
disp(x(ix))
To understand the details of what's going on here (and in many other situations you'll encounter working with floats), have a read through the Wikipedia entry for "floating point", or my favorite article on it, "What Every Computer Scientist Should Know About Floating-Point Arithmetic". (That title is hyperbole; this article goes deep and I don't understand half of it. But it's a great resource.) This stuff is particularly relevant to Matlab because Matlab does everything in floating point by default.