tsql query with defensive measure to prevent filling up tempdb - tsql

I recently wrote a query that, rather surprisingly, filled our tempdb. I was simply doing a string comparision on several thousand records, and I imagine because the strings where so long that the transactional data in the tempdb filled.
I would like to prevent this in the future by adding logic to my query that checks to see if tempdb is nearing its threshold, and if so ends the query. Is this possible?

Related

Shaped Queries Hit Database Multiple Times

Trying to tune an EF Core 1.0 query against SQL Server 2016. Run into the following issues:
When trying to avoid hitting the db multiple times, I try to return all data at once (using multiple "From" clauses). This approach can result in Cartesian products and, therefore, a prohibitive amount of data is returned.
Another approach is to avoid returning the massive amounts of data by using "Include" and "ThenInclude" statements. This returns a small amount of data but it also hits the database too many times (to shape the data).
I'm starting to think that a stored procedure would be the best of both worlds but then I lose the advantages of Linq. Any concerns/advice?

OLAP Approach for Backend redshift connection

We have a system where we do some aggregations in Redshift based on some conditions. We aggregate this data with complex joins which usually takes about 10-15 minutes to complete. We then show this aggregated data on Tableau to generate our reports.
Lately, we are getting many changes regarding adding a new dimension ( which usually requires join with a new table) or get data on some more specific filter. To entertain these requests we have to change our queries everytime for each of our subprocesses.
I went through OLAP a little bit. I just want to know if it would be better in our use case or is there any better way to design our system to entertain such adhoc requests which does not require developer to change things everytime.
Thanks for the suggestions in advance.
It would work, rather it should work. Efficiency is the key here. There are few things which you need to strictly monitor to make sure your system (Redshift + Tableau) remains up and running.
Prefer Extract over Live Connection (in Tableau)
Live connection would query the system everytime someone changes the filter or refreshes the report. Since you said the dataset is large and queries are complex, prefer creating an extract. This'll make sure data is available upfront whenever someone access your dashboard .Do not forget to schedule the extract refresh, other wise the data will be stale forever.
Write efficient queries
OLAP systems are expected to query a large dataset. Make sure you write efficient queries. It's always better to first get a small dataset and join them rather than bringing everything in the memory and then joining / using where clause to filter the result.
A query like (select foo from table1 where ... )a left join (select bar from table2 where) might be the key at times where you only take out small and relevant data and then join.
Do not query infinite data.
Since this is analytical and not transactional data, have an upper bound on the data that Tableau will refresh. Historical data has an importance, but not from the time of inception of your product. Analysing the data for the past 3, 6 or 9 months can be the key rather than querying the universal dataset.
Create aggregates and let Tableau query that table, not the raw tables
Suppose you're analysing user traits. Rather than querying a raw table that captures 100 records per user per day, design a table which has just one (or two) entries per user per day and introduce a column - count which'll tell you the number of times the event has been triggered. By doing this, you'll be querying sufficiently smaller dataset but will be logically equivalent to what you were doing earlier.
As mentioned by Mr Prashant Momaya,
"While dealing with extracts,your storage requires (size)^2 of space if your dashboard refers to a data of size - **size**"
Be very cautious with whatever design you implement and do not forget to consider the most important factor - scalability
This is a typical problem and we tackled it by writing SQL generators in Python. If the definition of the metric is the same (like count(*)) but you have varying dimensions and filters you can declare it as JSON and write a generator that will produce the SQL. Example with pageviews:
{
metric: "unique pageviews"
,definition: "count(distinct cookie_id)"
,source: "public.pageviews"
,tscol: "timestamp"
,dimensions: [
['day']
,['day','country']
}
can be relatively easy translated to 2 scripts - this:
drop table metrics_daily.pageviews;
create table metrics_daily.pageviews as
select
date_trunc('day',"timestamp") as date
,count(distinct cookie_id) as "unique_pageviews"
from public.pageviews
group by 1;
and this:
drop table metrics_daily.pageviews_by_country;
create table metrics_daily.pageviews_by_country as
select
date_trunc('day',"timestamp") as date
,country
,count(distinct cookie_id) as "unique_pageviews"
from public.pageviews
group by 1,2;
the amount of complexity of a generator required to produce such sql from such config is quite low but in increases exponentially as you need to add new joins etc. It's much better to keep your dimensions in the encoded form and just use a single wide table as aggregation source, or produce views for every join you might need and use them as sources.

Postgres partitioning?

My software runs a cronjob every 30 minutes, which pulls data from Google Analytics / Social networks and inserts the results into a Postgres DB.
The data looks like this:
url text NOT NULL,
rangeStart timestamp NOT NULL,
rangeEnd timestamp NOT NULL,
createdAt timestamp DEFAULT now() NOT NULL,
...
(various integer columns)
Since one query returns 10 000+ items, it's obviously not a good idea to store this data in a single table. At this rate, the cronjob will generate about 480 000 records a day and about 14.5 million a month.
I think the solution would be using several tables, for example I could use a specific table to store data generated in a given month: stats_2015_09, stats_2015_10, stats_2015_11 etc.
I know Postgres supports table partitioning. However, I'm new to this concept, so I'm not sure what's the best way to do this. Do I need partitioning in this case, or should I just create these tables manually? Or maybe there is a better solution?
The data will be queried later in various ways, and those queries are expected to run fast.
EDIT:
If I end up with 12-14 tables, each storing 10-20 millions rows, Postgres should be still able to run select statements quickly, right? Inserts don't have to be super fast.
Partitioning is a good idea under various circumstances. Two that come to mind are:
Your queries have a WHERE clause that can be readily mapped onto one or a handful of partitions.
You want a speedy way to delete historical data (dropping a partition is faster than deleting records).
Without knowledge of the types of queries that you want to run, it is difficult to say if partitioning is a good idea.
I think I can say that splitting the data into different tables is a bad idea because it is a maintenance nightmare:
You can't have foreign key references into the table.
Queries spanning multiple tables are cumbersome, so simple questions are hard to answer.
Maintaining tables becomes a nightmare (adding/removing a column).
Permissions have to be carefully maintained, if you have users with different roles.
In any case, the place to start is with Postgres's documentation on partitioning, which is here. I should note that Postgres's implementation is a bit more awkward than in other databases, so you might want to review the documentation for MySQL or SQL Server to get an idea of what it is doing.
Firstly, I would like to challenge the premise of your question:
Since one query returns 10 000+ items, it's obviously not a good idea to store this data in a single table.
As far as I know, there is no fundamental reason why the database would not cope fine with a single table of many millions of rows. At the extreme, if you created a table with no indexes, and simply appended rows to it, Postgres could simply carry on writing these rows to disk until you ran out of storage space. (There may be other limits internally, I'm not sure; but if so, they're big.)
The problems only come when you try to do something with that data, and the exact problems - and therefore exact solutions - depend on what you do.
If you want to regularly delete all rows which were inserted more than a fixed timescale ago, you could partition the data on the createdAt column. The DELETE would then become a very efficient DROP TABLE, and all INSERTs would be routed through a trigger to the "current" partition (or could even by-pass it if your import script was aware of the partition naming scheme). SELECTs, however, would probably not be able to specify a range of createAt values in their WHERE clause, and would thus need to query all partitions and combine the results. The more partitions you keep around at a time, the less efficient this would be.
Alternatively, you might examine the workload on the table and see that all queries either already do, or easily can, explicitly state a rangeStart value. In that case, you could partition on rangeStart, and the query planner would be able to eliminate all but one or a few partitions when planning each SELECT query. INSERTs would need to be routed through a trigger to the appropriate table, and maintenance operations (such as deleting old data that is no longer needed) would be much less efficient.
Or perhaps you know that once rangeEnd becomes "too old" you will no longer need the data, and can get both benefits: partition by rangeEnd, ensure all your SELECT queries explicitly mention rangeEnd, and drop partitions containing data you are no longer interested in.
To borrow Linus Torvald's terminology from git, the "plumbing" for partitioning is built into Postgres in the form of table inheritance, as documented here, but there is little in the way of "porcelain" other than examples in the manual. However, there is a very good extension called pg_partman which provides functions for managing partition sets based on either IDs or date ranges; it's well worth reading through the documentation to understand the different modes of operation. In my case, none quite matched, but forking that extension was significantly easier than writing everything from scratch.
Remember that partitioning does not come free, and if there is no obvious candidate for a column to partition by based on the kind of considerations above, you may actually be better off leaving the data in one table, and considering other optimisation strategies. For instance, partial indexes (CREATE INDEX ... WHERE) might be able to handle the most commonly queried subset of rows; perhaps combined with "covering indexes", where Postgres can return the query results directly from the index without reference to the main table structure ("index-only scans").

IBMDB2 select query for millions of data

i am new at db2 i want to select around 2 million data with single query like that
which will select and display first 5000 data and in back process it will select other 5000 data and keep on same till end of the all data help me out with this how to write query or using function
Sounds like you want what's known as blocking. However, this isn't actually handled (not the way you're thinking of) at the database level - it's handled at the application level. You'd need to specify your platform and programming language for us to help there. Although if you're expecting somebody to actually read 2 million rows, it's going to take a while... At one row a second, that's 23 straight days.
The reason that SQL doesn't really perform this 'natively' is that it's (sort of) less efficient. Also, SQL is (by design) set up to operate over the entire set of data, both conceptually and syntactically.
You can use one of the new features, that incorporates paging from Oracle or MySQL: https://www.ibm.com/developerworks/mydeveloperworks/blogs/SQLTips4DB2LUW/entry/limit_offset?lang=en
At the same time, you can influence the optimizer by indicating OPTIMIZED FOR n ROWS, and FETCH FIRST n ROWS ONLY. If you are going to read only, it is better to specify this clause in the query "FOR READ ONLY", this will increase the concurrency, and the cursor will not be update-able. Also, assign a good isolation level, for this case you could eventually use "uncommitted read" (with UR). A Previous Lock table will be good.
Do not forget the common practices like: index or cluster index, retrieve only the necessary columns, etc. and always analyze the access plan via the Explain facility.

Some basic questions on RDBMSes

I've skimmed thru Date and Silberschatz but can't seem to find answers to these specific questions of mine.
If 2 database users issue a query -- say, 'select * from AVERYBIGTABLE;' -- where would the results of the query get stored in general... i.e., independent of the size of the result set?
a. In the OS-managed physical/virtual memory of the DBMS server?
b. In a DBMS-managed temporary file?
Is the query result set maintained per connection?
If the query result set is indeed maintained per connection, then what if there's connection pooling in effect (by a layer of code sitting above the DBMS)? Won't, then, the result set be maintained per query (instead of per connection)?
If the database is changing in realtime while its users concurrently issue select queries, what happens to the queries that have already been executed but not yet (fully) 'consumed' by the query issuers? For example, assume the result set has 50,000 rows; the user is currently iterating at 100th, when parallely another user executes an insert/delete such that it would lead to more/less than 50,000 rows if the earlier query were to be re-issued by any user of the DBMS?
On the other hand, in case of a database that does not change in realtime, if 2 users issue identical queries each with identical but VERY LARGE result sets, would the DBMS maintain 2 identical copies of the result set, or would it have a single shared copy?
Many thanks in advance.
Some of this may be specific to Oracle.
The full results of the query do not need to copied each user gets a cursor (like a pointer) that maintains which rows have been retrieved, and what rows still need to be fetched. The database will cache as much of data as it can as it reads the data out of the tables. Same principal as two users have read only file handle on file.
The cursors are maintained per connection, the data for the next row may or may not already be in memory.
Connections for the most part are single threaded, only 1 client can use a connection at a time. If the same query is executed twice on the same connection then the cursor position is reset.
If a cursor is open on table that is being updated then the old rows are copied into a separate space (undo in Oracle) and is maintained for the life of the cursor, or at least until it runs out of space to maintain it. (Oracle will give a snapshot too old error)
The database will never duplicate the data stored in cache, in Oracle's case with cursor sharing there would a single cached cursor and each client cursor would only have to maintain its position in the cached cursor.
Oracle Database Concepts
See 8 Memory for questions 1, 2, 5
See 13 Data Concurrency and Consistency (Questions 3, 4)
The reason you don't find this in Date etc is because they could change between DBMS products, there is nothing in the relational model theory about pooling connections to the database or how to maintain the result sets from a query (like caching etc). The only point which is partially covered is 4 - where the read level would come into play (eg read uncommitted), but this only applies until the result set has been produced.