How to customize serialization behavior without annotations in Salat? - mongodb

I'm using Salat library to serialize objects to be stored in MongoDb via Casbah. Sometimes I need to tune little bit how fields will be serialized, and Salat's Annotations is a pretty convenient way to do it.
BUT, Is there any way to describe serialization parameters(Key, Ignore etc) not directly in case-classes(models) via Annotations, but in some external point, to keep my models clear from Salat dependency(aka POJO/POCO)?

Yes, you can add custom serialization logic to your Salat context.
Example from Salat unit tests:
WibbleTransformer
Custom context with custom transformers added

Related

Does Morphia honor java.persistence annotations?

Does Morphia honor javax.persistence annotations? I have a scenario where I need to publish a light weight object model with minimal dependencies, and then have separate modules choose how it performs it's persistence using this common object model.
No it does not unfortunately. Most of those annotations wouldn't apply to morphia models anyway so it might be more confusing than it's worth.

Can I customize data serialization mechanism in spark

In my project, I need to ship plenty of existing Java objects to Spark workers, most of them are not extended from java.io.Serializable. I also want the ability to control the variables/attributes included in the objects. I only want to serialize the useful attributes, not everything in a object.
Spark documentation indicates that there are two ways to serialize an object in Spark, using java.io.Serializable or Kryo. I think both ways need to rewrite a bunch of wrappers or extra code for every business objects. However, my current code base has already implemented protocol-buffers serialization. I am wondering if there is any way to embed this serialization mechanism into Spark.

Integration tests in Scala when using compagnons with Play2? -> Cake pattern?

I'm working on my first Scala application, where we use an ActiveRecord style to retrieve data from MongoDB.
I have models like User and Category, which all have a companion object that uses the trait:
class MongoModel[T <: IdentifiableModel with CaseClass] extends ModelCompanion[T, ObjectId]
ModelCompanion is a Salat class which provide common MongoDB crud operations.
This permits to retrieve data like this:
User.profile(userId)
I never had any experience with this ActiveRecord query style. But I know Rails people are using it. And I think I saw it on Play documentation (version 1.2?) to deal with JPA.
For now it works fine, but I want to be able to run integration tests on my MongoDB.
I can run an "embedded" MongoDB with a library. The big deal is that my host/port configuration are actually kind of hardcoded on the MongoModel class which is extended by all the model companions.
I want to be able to specify a different host/port when I run integration tests (or any other "profile" I could create in the future).
I understand well dependency injection, using Spring for many years in Java, and the drawbacks of all this static stuff in my application. I saw that there is now a scala-friendly way to configure a Spring application, but I'm not sure using Spring is appropriate in Scala.
I have read some stuff about the Cake pattern and it seems to do what I want, being some kind of typesafe, compile-time-checked spring context.
Should I definitely go to the Cake pattern, or is there any other elegant alternative in Scala?
Can I keep using an ActiveRecord style or is it a total anti-pattern for testability?
Thanks
No any static references - using Cake pattern you got 2 different classes for 2 namespaces/environments, each overriding "host/port" resource on its own. Create a trait containing your resources, inherit it 2 times (by providing actual information about host/port, depending on environment) and add to appropriate companion objects (for prod and for test). Inside MongoModel add self type that is your new trait, and refactor all host/port references in MongoModel, to use that self type (your new trait).
I'd definitely go with the Cake Pattern.
You can read the following article with show an example of how to use the Cake Pattern in a Play2 application:
http://julien.richard-foy.fr/blog/2011/11/26/dependency-injection-in-scala-with-play-2-it-s-free/

Scala, Morphia and Enumeration

I need to store Scala class in Morphia. With annotations it works well unless I try to store collection of _ <: Enumeration
Morphia complains that it does not have serializers for that type, and I am wondering, how to provide one. For now I changed type of collection to Seq[String], and fill it with invoking toString on every item in collection.
That works well, however I'm not sure if that is right way.
This problem is common to several available layers of abstraction on the top of MongoDB. It all come back to a base reason: there is no enum equivalent in json/bson. Salat for example has the same problem.
In fact, MongoDB Java driver does not support enums as you can read in the discussion going on here: https://jira.mongodb.org/browse/JAVA-268 where you can see the problem is still open. Most of the frameworks I have seen to use MongoDB with Java do not implement low-level functionalities such as this one. I think this choice makes a lot of sense because they leave you the choice on how to deal with data structures not handled by the low-level driver, instead of imposing you how to do it.
In general I feel that the absence of support comes not from technical limitation but rather from design choice. For enums, there are multiple way to map them with their pros and their cons, while for other data types is probably simpler. I don't know the MongoDB Java driver in detail, but I guess supporting multiple "modes" would have required some refactoring (maybe that's why they are talking about a new version of serialization?)
These are two strategies I am thinking about:
If you want to index on an enum and minimize space occupation, you will map the enum to an integer ( Not using the ordinal , please can set enum start value in java).
If your concern is queryability on the mongoshell, because your data will be accessed by data scientist, you would rather store the enum using its string value
To conclude, there is nothing wrong in adding an intermediate data structure between your native object and MongoDB. Salat support it through CustomTransformers, on Morphia maybe you would need to do the conversion explicitely. Go for it.

Sending persisted JDO instances over GWT-RPC

I've just started learning Google Web Toolkit and finished writing the Stock Watcher tutorial app.
Is my thinking correct that if one wants to persist a business object (like a Stock) using JDO and send it back and forth to/from the client over RPC then one has to create two separate classes for that object: One with the JDO annotations for persisting it on the server and another which is serialisable and used over RPC?
I notice the Stock Watcher has separate classes and I can theorise why:
Otherwise the gwt compiler would try
to generate javascript for everything
the persisted class referenced like
JDO and com.google.blah.users.User, etc
Also there may be logic on the server-side
class which doesn't apply to the client
and vice-versa.
I just want to make sure I'm understanding this correctly. I don't want to have to create two versions of all my business object classes which I want to use over RPC if I don't have to.
The short answer is: you don't need to create duplicate classes.
I recommend that you take a look from the following google groups discussion on the gwt-contributors list:
http://groups.google.com/group/google-web-toolkit-contributors/browse_thread/thread/3c768d8d33bfb1dc/5a38aa812c0ac52b
Here is an interesting excerpt:
If this is all you're interested in, I
described a way to make GAE and
GWT-RPC work together "out of the
box". Just declare your entities as:
#PersistenceCapable(identityType =
IdentityType.APPLICATION, detachable
= "false") public class MyPojo implements Serializable { }
and everything will work, but you'll
have to manually deal with
re-attachment when sending objects
from the client back to the server.
You can use this option, and you will not need a mirror (DTO) class.
You can also try gilead (former hibernate4gwt), which takes care of some details within the problems of serializing enhanced objects.
Your assessment is correct. JDO replaces instances of Collections with their own implementations, in order to sniff when the object graph changes, I suppose. These implementations are not known by the GWT compiler, so it will not be able to serialize them. This happens often for classes that are composed of otherwise GWT compliant types, but with JDO annotations, especially if some of the object properties are Collections.
For a detailed explanation and a workaround, check out this pretty influential essay on the topic: http://timepedia.blogspot.com/2009/04/google-appengine-and-gwt-now-marriage.html
I finally found a solution. Don't change your object at all, but for the listing do it this way:
List<YourCustomObject> secureList=(List<YourCustomObject>)pm.newQuery(query).execute();
return new ArrayList<YourCustomObject>(secureList);
The actual problem is not in Serializing the Object... the problem is to Serialize the Collection class which is implemented by Google and is not allowed to Serialize out.
You do not have to create two versions of the domain model.
Here are two tips:
Use a String encoded key, not the Appengine Key class.
pojo = pm.detachCopy(pojo)
...will remove all the JDO enhancements.
You don't have to create separate instances at all, in fact you're better off not doing it. Your JDO objects should be plain POJOs anyway, and should never contain business logic. That's for your business layer, not your persistent objects themselves.
All you need to do is include the source for the annotations you are using and GWT should compile your class just fine. Also, you want to avoid using libraries that GWT can't compile (like things that use reflection, etc.), but in all the projects I've done this has never been a problem.
I think that a better format to send objects through GWT is through JSON. In this case from the server a JSON string would be sent which would then have to be parsed in the client. The advantage is that the final Javascript which is rendered in the browser has a smaller size. thus causing the page to load faster.
Secondly to send objects through GWT, the objects should be serializable. This may not be the case for all objects
Thirdly GWT has inbuilt functions to handle JSON... so no issues on the client end