MATLAB: FFT with specified modes - matlab

Using MATLAB I want to implement some kind of a spectral method. The idea is as following (described for a example which is working).
Dirichlet (and Neumann, and periodic) boundaries leads to eigenvalues in the fourier space of k=n*pi/L
Projecting all the linear operators in the fourier space to the discretized k-values:
e.g. L = -D*(k.*k) (for diffusion only)
Defining the propagator in time as P = exp( dt * L )
Calculating iteratively the evolution in time by uh_{n+1} = uh_n * P
return the calculated value to the real space every time I want to save the value by ifft( uh )
My question concerns another boundary conditions.
In my case I have Robin boundary conditions. So, the eigenvalues are defined through some weird equation of the form tan( x ) = x or the like. The problem of computing them is solved.
As I have the values, the step no. 2 and 3 is simple too, but:
For applying P on the fourier-transformed vector uh I have to ensure that my uh = fft(u) uses the same eigenvalues, which is not the case by default.
By default MATLAB uses equidistant modes for the fft.
Is there any simple trick for this?
Or, maybe, do I have any mistake in my thoughts?

Related

MATLAB: How to compute the similarity of two signals and get the correct consistency or coherence metric

I was wondering about the consistency metric. Generally, it allows us to deduce the parity or similarity between two signals, right? If so, if the probability is higher (from 0.5 to 1), does it means that there is a strong similarity of the signals? If the margin is less than (0.1-0.43), can this predict the poor coherence between the signals (or poor similarity, the probability the signals are different)? So, if we got the metric <0, is this approved the signal is totally different? Because I'm getting negative numbers. Is this hypothesis possible?
Can I have a clear understanding of the consistency metric of the signal? Here is my small code and figure. Thanks in advance.
s1 = signal3
s2 = signal4
if s1 ~= s2
[C1] = xcorr(s1);
[C2] = xcorr(s2);
signal_mix = C1.*C2 %mixing vector
signal_mix1 = signal_mix
else
s1(1,:) == s2(1,:)
s3 = s1
s3= s2
signal_mix = s2
end
n =2;
for i = length(signal_mix1)
signal_mix1(i) = min(C1(i),C2(i))/ max(C1(i),C2(i)) % consistency score
signal_mix2 = sum(signal_mix1(i))
end
Depending on your use case you might want to consider a dynamic time wraping distance (Matlab has a build in function for that) as similarity metric. One problem with using correlation as a metric is that it compares always the same timestep of the signals. So two identical signals, where one is time delayed, could lead to low correlation. The DTW distance adresses this by comparing to values of adjacent timesteps.
The downside of the dtw distance is that the distance it self can't be interpretet on its only only relative to other distances. So you can tell that two signals A & B with a distance of 150 are more similar than A & C with a distance of 250. But the distance of 150 on its own doesn't tell you a lot.
first of all, you could use xcorrfunction to calculate cross-correlation between two signals.
from Matlab help:
r = xcorr(x,y) returns the cross-correlation of two discrete-time
sequences. Cross-correlation measures the similarity between a vector
x and shifted (lagged) copies of a vector y as a function of the lag.
If x and y have different lengths, the function appends zeros to the
end of the shorter vector so it has the same length as the other.
additionally you could use xcov:
xcov computes the mean of its inputs, subtracts the mean, and then
calls xcorr.
The result of xcov can be interpreted as an estimate of the covariance
between two random sequences or as the deterministic covariance
between two deterministic signals.
in case of your example you are using xcorr with one signal so it computes auto-correlation between the signal itself and its lagged signal.
update:
based on the comment, it seems you need linear correlation, it can be calculated by corr function:
p=corr(x,y)
the value of p is 1 when x , y behave exactly like each other, and is -1 when x and y behave quite the opposite of each other.
when p is 0 it means there is no correlation between two signals.

Computing the DFT of an arbitrary signal

As part of a course in signal processing at university, we have been asked to write an algorithm in Matlab to calculate the single sided spectrum of our signal using DFT, without using the fft() function built in to matlab. this isn't an assessed part of the course, I'm just interested in getting this "right" for myself. I am currently using the 2018b version of Matlab, should anyone find this useful.
I have built a signal of a 1 KHz and 2KHz sinusoid, phase shifted by 135 degrees (2*pi/3 rad).
then using the equations in 9.1 of Discrete time signal processing (Allan V. Oppenheim) and Euler's formula to simplify the exponent, I produce this code:
%%DFT(currently buggy)
n=0;m=0;
for m=1:DFT_N-1 %DFT_Fmin;DFT_Fmax; %scrolls through DFT m values (K in text.)
for n=1:DFT_N-1;%;(DFT_N-1);%<<redundant code? from Oppenheim eqn. 9.1 % eulers identity, K=m and n=n
X(m)=x(n)*(cos((2*pi*n*m)/DFT_N)-j*sin((2*pi*n*m)/DFT_N));
n=n+1;
end
%m=m+1; %redundant code?
end
This takes x as the input, in this case the signal mentioned earlier, as well as the resolution of the transform, as represented by the DFT_N, which has been initialized to 100. The output of this function, X, should be something in the frequency domain, but plotting X yields a circular plot slightly larger than the unit circle, and with a gap on the left hand edge.
I am struggling to see how I am supposed to convert this to the stem() plots as given by the in-built DFT algorithm.
Many thanks, J.
This is your bug:
replace X(m)=x(n)*(cos.. with X(m)=X(m)+x(n)*(cos..
For a given m, it does not integrate over the variable n, but overwrites X(m) only the last calculation for n = DFT_N-1.
Notice that integrating over n=1:DFT_N-1 omits one harmonic, i.e., the first one, exp(-j*2*pi). Replace
n=1:DFT_N-1 with n=1:DFT_N to include that. I would also replace m=1:DFT_N-1 with m=1:DFT_N for plotting concerns.
Also replace any 2*pi*n*m with 2*pi*(n-1)*(m-1) to get the phase right, since the first entry of X should correspond to zero-frequency, yielding sum_n x(n) * (cos(0) + j sin(0)) = sum_n x(n). If your signal x is real-valued then the zero-frequency component X(1) should be real-valued, angle(X(1))=0.
Last remark, don't forget to shift zero-frequency component to the center of the spectrum for better visibility, X = circshift(X,floor(size(X)/2));
If you are interested in the single-sided spectrum only, than you can just calculate X(m) for m=1:DFT_N/2 since X it is conjugate symmetric around m=DFT_N/2, i.e., X(DFT_N/2+m) = X(DFT_N/2-m)', due to exp(-j*(pi*n+2*pi/DFT_N*m)) = exp(-j*(pi*n-2*pi/DFT_N*m))'.
As a side note, for a given m this program calculates an inner product between the array x and another array of complex exponentials, i.e., exp(-j*2*pi/DFT_N*m*n), for n = 0,1,...,N-1. MATLAB syntax is very convenient for such calculations, and you can avoid this inner loop by the following command
exp(-j*2*pi/DFT_N*m*(0:DFT_N-1)) * x
where x is a column vector. Similarly, you can avoid the first loop too by expanding your complex exponential vector row-wise for every m, i.e., build the matrix exp(-j*2*pi/DFT_N*(0:DFT_N-1)'*(0:DFT_N-1)). Then your DFT is simply
X = exp(-j*2*pi/DFT_N*(0:DFT_N-1)'*(0:DFT_N-1)) * x
For single-sided spectrum, instead use
X = exp(-j*2*pi/DFT_N*(0:floor((DFT_N-1)/2))'*(0:DFT_N-1)) * x

Speed up calculation in Physics simulation in Matlab

I am working on a MR-physic simulation written in Matlab which simulates bloch's equations on an defined object. The magnetisation in the object is updated every time-step with the following functions.
function Mt = evolveMtrans(gamma, delta_B, G, T2, Mt0, delta_t)
% this function calculates precession and relaxation of the
% transversal component, Mt, of M
delta_phi = gamma*(delta_B + G)*delta_t;
Mt = Mt0 .* exp(-delta_t*1./T2 - 1i*delta_phi);
end
This function is a very small part of the entire code but is called upon up to 250.000 times and thus slows down the code and the performance of the entire simulation. I have thought about how I can speed up the calculation but haven't come up with a good solution. There is one line that is VERY time consuming and stands for approximately 50% - 60% of the overall simulation time. This is the line,
Mt = Mt0 .* exp(-delta_t*1./T2 - 1i*delta_phi);
where
Mt0 = 512x512 matrix
delta_t = a scalar
T2 = 512x512 matrix
delta_phi = 512x512 matrix
I would be very grateful for any suggestion to speed up this calculation.
More info below,
The function evovleMtrans is called every timestep during the simulation.
The parameters that are used for calling the function are,
gamma = a constant. (gyramagnetic constant)
delta_B = the magnetic field value
G = gradientstrength
T2 = a 512x512 matrix with T2-values for the object
Mstart.r = a 512x512 matrix with the values M.r had the last timestep
delta_t = a scalar with the difference in time since the last calculated M.r
The only parameters of these that changed during the simulation are,
G, Mstart.r and delta_t. The rest do not change their values during the simulation.
The part below is the part in the main code that calls the function.
% update phase and relaxation to calcTime
delta_t = calcTime - Mstart_t;
delta_B = (d-d0)*B0;
G = Sq.Gx*Sq.xGxref + Sq.Gz*Sq.zGzref;
% Precession around B0 (z-axis) and B1 (+-x-axis or +-y-axis)
% is defined clock-wise in a right hand system x, y, z and
% x', y', z (see the Bloch equation, Bloch 1946 and Levitt
% 1997). The x-axis has angle zero and the y-axis has angle 90.
% For flipping/precession around B1 in the xy-plane, z-axis has
% angle zero.
% For testing of precession direction:
% delta_phi = gamma*((ones(size(d)))*1e-6*B0)*delta_t;
M.r = evolveMtrans(gamma, delta_B, G, T2, Mstart.r, delta_t);
M.l = evolveMlong(T1, M0.l, Mstart.l, delta_t);
This is not a surprise.
That "single line" is a matrix equation. It's really 1,024 simultaneous equations.
Per Jannick, that first term means element-wise division, so "delta_t/T[i,j]". Multiplying a matrix by a scalar is O(N^2). Matrix addition is O(N^2). Evaluating exponential of a matrix will be O(N^2).
I'm not sure if I saw a complex argument in there as well. Does that mean complex matricies with real and imaginary entries? Does your equation simplify to real and imaginary parts? That means twice the number of computations.
Your best hope is to exploit symmetry as much as possible. If all your matricies are symmetric, you cut your calculations roughly in half.
Use parallelization if you can.
Algorithm choice can make a big difference, too. If you're using explicit Euler integration, you may have time step limitations due to stability concerns. Is that why you have 250,000 steps? Maybe a larger time step is possible with a more stable integration schema. Think about a higher order adaptive scheme with error correction, like 5th order Runge Kutta.
There are several possibilities to improve the speed of the code but all that I see come with a caveat.
Numerical ode integration
The first possibility would be to change your analytical solution by numerical differential equation solver. This has several advantages
The analytical solution includes the complex exponential function, which is costly to calculate, while the differential equation contains only multiplication and addition. (d/dt u = -a u => u=exp(-at))
There are plenty of built-in solvers for matlab available and they are typically pretty fast (e.g. ode45). The built-ins however all use a variable step size. This improves speed and accuracy but would be a problem if you really need a fixed equally spaced grid of time points. Here are unofficial fixed step solvers.
As a start you could also try to use just an euler step by replacing
M.r = evolveMtrans(gamma, delta_B, G, T2, Mstart.r, delta_t);
by
delta_phi = gamma*(delta_B + G)*t_step;
M.r += M.r .* (1-t_step*1./T2 - 1i*delta_phi);
You can then further improve that by precalculating all constant values, e.g. one_over_T1=1/T1, moving delta_phi out of the loop.
Caveat:
You are bound to a minimum step size or the accuracy suffers. Therefore this is only a good idea if you time-spacing is quite fine.
Less points in time
You should carfully analyze whether you really need so many points in time. It seems somewhat puzzling to me that you need so many points. As you know the full analytical solution you can freely choose how to sample the time and maybe use this to your advantage.
Going fortran
This might seem like a grand step but in my experience basic (simple loops, matrix operations etc.) matlab code can be relatively easily translated to fortran line-by-line. This would be especially helpful in addition to my first point. If you still want to use the full analytical solution probably there is not much to gain here because exp is already pretty fast in matlab.

Minimize quadratic form energy using matlab. Which function should I use?

I'm new to matlab and try to do some energy minimization work with it. The energy function takes a 3-channel image as input. For every channel, there's a energy term looks like this:
E = x'Ax + ||Bx||^2 + w*||x-c||^2,
where x,c are vectors of length N, A is a matrix of size N*N. A is sparse and positive semi-definite and has 25 non-zero elements per row, giving constraints to all elements of x. B is of size M*N. B is sparse too and has 2 non-zero elements per row. N is about 850,000. M is about 1,000,000. Although B gives more than N constraints, some elements of x have nothing to do with ||Bx||^2 term. The weight w of term ||x-c||^ is quite small, say 1e-3.
I've searched matlab documentation. It looks like I should use lsqnonlin for this problem. Is there a special designed function or option for quadratic form minimization in matlab?
For those who are familiar with computer vision literature, I'm actually trying to implement the algorithm in "Coherent Intrinsic Images from Photo Collections". The authors said they use matlab backslash operator to minimize the energy, but I can't see how a backslash operator can be used in quadratic form problem.
Yes, there is a function specifically for optimizing quadratic cost functions: quadprog. However, if you don't have any linear constraints, then you should be able to write your cost function as
E = x'Mx/2 + vx + k
Finding the point of zero gradient (hopefully a minimum) can then be achieved by taking first derivatives:
dE/dx = Mx + v
setting them to zero giving the solution:
x = -M\v

How to find minimum of nonlinear, multivariate function using Newton's method (code not linear algebra)

I'm trying to do some parameter estimation and want to choose parameter estimates that minimize the square error in a predicted equation over about 30 variables. If the equation were linear, I would just compute the 30 partial derivatives, set them all to zero, and use a linear-equation solver. But unfortunately the equation is nonlinear and so are its derivatives.
If the equation were over a single variable, I would just use Newton's method (also known as Newton-Raphson). The Web is rich in examples and code to implement Newton's method for functions of a single variable.
Given that I have about 30 variables, how can I program a numeric solution to this problem using Newton's method? I have the equation in closed form and can compute the first and second derivatives, but I don't know quite how to proceed from there. I have found a large number of treatments on the web, but they quickly get into heavy matrix notation. I've found something moderately helpful on Wikipedia, but I'm having trouble translating it into code.
Where I'm worried about breaking down is in the matrix algebra and matrix inversions. I can invert a matrix with a linear-equation solver but I'm worried about getting the right rows and columns, avoiding transposition errors, and so on.
To be quite concrete:
I want to work with tables mapping variables to their values. I can write a function of such a table that returns the square error given such a table as argument. I can also create functions that return a partial derivative with respect to any given variable.
I have a reasonable starting estimate for the values in the table, so I'm not worried about convergence.
I'm not sure how to write the loop that uses an estimate (table of value for each variable), the function, and a table of partial-derivative functions to produce a new estimate.
That last is what I'd like help with. Any direct help or pointers to good sources will be warmly appreciated.
Edit: Since I have the first and second derivatives in closed form, I would like to take advantage of them and avoid more slowly converging methods like simplex searches.
The Numerical Recipes link was most helpful. I wound up symbolically differentiating my error estimate to produce 30 partial derivatives, then used Newton's method to set them all to zero. Here are the highlights of the code:
__doc.findzero = [[function(functions, partials, point, [epsilon, steps]) returns table, boolean
Where
point is a table mapping variable names to real numbers
(a point in N-dimensional space)
functions is a list of functions, each of which takes a table like
point as an argument
partials is a list of tables; partials[i].x is the partial derivative
of functions[i] with respect to 'x'
epilson is a number that says how close to zero we're trying to get
steps is max number of steps to take (defaults to infinity)
result is a table like 'point', boolean that says 'converged'
]]
-- See Numerical Recipes in C, Section 9.6 [http://www.nrbook.com/a/bookcpdf.php]
function findzero(functions, partials, point, epsilon, steps)
epsilon = epsilon or 1.0e-6
steps = steps or 1/0
assert(#functions > 0)
assert(table.numpairs(partials[1]) == #functions,
'number of functions not equal to number of variables')
local equations = { }
repeat
if Linf(functions, point) <= epsilon then
return point, true
end
for i = 1, #functions do
local F = functions[i](point)
local zero = F
for x, partial in pairs(partials[i]) do
zero = zero + lineq.var(x) * partial(point)
end
equations[i] = lineq.eqn(zero, 0)
end
local delta = table.map(lineq.tonumber, lineq.solve(equations, {}).answers)
point = table.map(function(v, x) return v + delta[x] end, point)
steps = steps - 1
until steps <= 0
return point, false
end
function Linf(functions, point)
-- distance using L-infinity norm
assert(#functions > 0)
local max = 0
for i = 1, #functions do
local z = functions[i](point)
max = math.max(max, math.abs(z))
end
return max
end
You might be able to find what you need at the Numerical Recipes in C web page. There is a free version available online. Here (PDF) is the chapter containing the Newton-Raphson method implemented in C. You may also want to look at what is available at Netlib (LINPack, et. al.).
As an alternative to using Newton's method the Simplex Method of Nelder-Mead is ideally suited to this problem and referenced in Numerical Recpies in C.
Rob
You are asking for a function minimization algorithm. There are two main classes: local and global. Your problem is least squares so both local and global minimization algorithms should converge to the same unique solution. Local minimization is far more efficient than global so select that.
There are many local minimization algorithms but one particularly well suited to least squares problems is Levenberg-Marquardt. If you don't have such a solver to hand (e.g. from MINPACK) then you can probably get away with Newton's method:
x <- x - (hessian x)^-1 * grad x
where you compute the inverse matrix multiplied by a vector using a linear solver.
Since you already have the partial derivatives, how about a general gradient-descent approach?
Maybe you think you have a good-enough solution, but for me, the easiest way to think about this is to understand it in the 1-variable case first, and then extend it to the matrix case.
In the 1-variable case, if you divide the first derivative by the second derivative, you get the (negative) step size to your next trial point, e.g. -V/A.
In the N-variable case, the first derivative is a vector and the second derivative is a matrix (the Hessian). You multiply the derivative vector by the inverse of the second derivative, and the result is the negative step-vector to your next trial point, e.g. -V*(1/A)
I assume you can get the 2nd-derivative Hessian matrix. You will need a routine to invert it. There are plenty of these around in various linear algebra packages, and they are quite fast.
(For readers who are not familiar with this idea, suppose the two variables are x and y, and the surface is v(x,y). Then the first derivative is the vector:
V = [ dv/dx, dv/dy ]
and the second derivative is the matrix:
A = [dV/dx]
[dV/dy]
or:
A = [ d(dv/dx)/dx, d(dv/dy)/dx]
[ d(dv/dx)/dy, d(dv/dy)/dy]
or:
A = [d^2v/dx^2, d^2v/dydx]
[d^2v/dxdy, d^2v/dy^2]
which is symmetric.)
If the surface is parabolic (constant 2nd derivative) it will get to the answer in 1 step. On the other hand, if the 2nd derivative is very not-constant, you could encounter oscillation. Cutting each step in half (or some fraction) should make it stable.
If N == 1, you'll see that it does the same thing as in the 1-variable case.
Good luck.
Added: You wanted code:
double X[N];
// Set X to initial estimate
while(!done){
double V[N]; // 1st derivative "velocity" vector
double A[N*N]; // 2nd derivative "acceleration" matrix
double A1[N*N]; // inverse of A
double S[N]; // step vector
CalculateFirstDerivative(V, X);
CalculateSecondDerivative(A, X);
// A1 = 1/A
GetMatrixInverse(A, A1);
// S = V*(1/A)
VectorTimesMatrix(V, A1, S);
// if S is small enough, stop
// X -= S
VectorMinusVector(X, S, X);
}
My opinion is to use a stochastic optimizer, e.g., a Particle Swarm method.