Performing a function on each matrix value - matlab

I am currently experimenting with Matlab functions. Basically I am trying to perform a function on each value found in a matrix such as the following simple example:
k = [1:100];
p = [45 60 98 100; 46 65 98 20; 47 65 96 50];
p(find(p)) = getSum(k, find(p), find(p) + 1);
function x = getSum(k, f, g, h)
x = sum(k(f:g));
end
Why the corresponding output matrix values are all 3, in other words why all indices are depending on the first calculated sum?
The output is the following:
p =
3 3 3 3
3 3 3 3
3 3 3 3

f:g returns the value between f(1,1) and g(1,1), so 1:2.
find(p) returns the indices of non zero values. Since all values are non-zero, you get all indices.
So if we break down the statement p(find(p)) = getSum(k, find(p), fin(p) + 1)
We get
find(p) = 1:12
We then get
f = 1:12 and g = 2:13 which lead to k = 1:2 (as explained above)
finally sum(1:2) = 3
And this value is apply over p(1:12), which is the same as p(:,:) (all the matrix)

Related

Finding index of element matching condition of matrix - Matlab

Given a matrix Z(i,j) such that it maps to two arrays X(i), and Y(j).
I am trying to find elements of Z (and hence the corresponding X and Y) within a certain range.
I am now doing the following using logical indexing. Given this example
X = 1:5;
Y = 1:5;
Z = [17 24 1 8 15
23 5 6 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]
Z((X>1 & X<4),Y==3)
This works fine, but now I wish to find the minimum of the returned values from this particular range,
Which I do with
min(Z((X>1 & X<4),Y==3))
But now how I get back the corresponding X and Y values of the minimum? Since my logical indexing returns an array, all methods I have tried so far returns the index of the min in the answer array, not the original Z matrix.
I can't use
[row col] = find(Z==min(Z((X>1 & X<4),Y==3)))
Because of the repeats. What are my alternatives?
To retrieve the original indices, you have to keep the memory of the indices of your two conditions on x and y (which I put in the arrays cX and cY) and then use the function ind2sub.
NB: your code is a little bit confusing since x stands for the lines
and y for the columns, but I have kept the same convention in my
answer.
In practice, this gives:
% --- Definition
X = 1:5;
Y = 1:5;
Z = [17 24 1 8 15
23 5 6 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9];
% --- Get the values of interest
cX = find(X>1 & X<4);
cY = find(Y==3);
v = Z(cX,cY);
% --- Get position of the minimum in the initial array
[~, I] = min(v(:));
[Ix, Iy] = ind2sub([numel(cX) numel(cY)], I);
i = cX(Ix); % i = 2
j = cY(Iy); % j = 3
Best,
One approach -
%// Calculate all indices of the grid created with those two X-Y conditions
idx = bsxfun(#plus,(find(Y==3)-1)*size(Z,1),find((X>1 & X<4)).') %//'
%// Get the index corresponding to minimum from that grided Z
[~,min_idx] = min(Z(idx(:)))
%// Get corresponding X-Y indices by using indices calculated earlier
[indX,indY] = ind2sub([numel(X) numel(Y)],idx(min_idx))

How to create a vector in Matlab with two different step sizes?

I want to create a vector in Matlab with two step sizes that will alternate.
vector =
0 50 51 101 102 152 etc.
So the step size is 50 and 1 which will alternate. How to write a script that will create this vector?
Code
N = 6; %// Number of elements needed in the final output
sz1 = 50; %// Stepsize - 1
sz2 = 4; %// Stepsize - 2
startval = 8; %// First element of the output
vector = reshape(bsxfun(#plus,[startval startval+sz1]',[0:N/2-1]*(sz1+sz2)),1,[])
Output
vector =
8 58 62 112 116 166
Note: For your problem, you need to use sz2 = 1 and startval = 0 instead.
Explanation
Internally it creates two matrices which when "flattened-out" to form vectors would resemble the two vectors that you have pointed out in the comments. You can get those two matrices with the following two sets of conditions.
Set #1: If you keep N = 6, sz1 = 50, sz2 = 0 and startval = 0 -
bsxfun(#plus,[startval startval+sz1]',[0:N/2-1]*(sz1+sz2))
gives us -
0 50 100
50 100 150
Set #2: If you keep N = 6, sz1 = 0, sz2 = 1 and startval = 0 -
bsxfun(#plus,[startval startval+sz1]',[0:N/2-1]*(sz1+sz2))
gives us -
0 1 2
0 1 2
Good thing about bsxfun is that these two matrices can be summed internally to give the final output -
0 51 102
50 101 152
Since, you needed the output as a vector, we need to flatten it out using reshape -
reshape(...,1,[])
giving us -
0 50 51 101 102 152
Thus, we have the final code that was listed earlier.
Here are some ideas I've been playing around with:
Initialization (comparable to Divakar's answer):
N = 6; %// Number of pairs in the final output
firstStep = 50;
secndStep = 1;
startVal = 8; %// First element of the output
And then:
%// Idea 1:
V1 = [startVal cumsum(repmat([firstStep,secndStep],[1,N])) + startVal];
%// Idea 2:
trimVec = #(vec)vec(1:end-1);
V2 = trimVec(circshift(kron((startVal:firstStep:startVal + ...
N*firstStep),[1,1]),[0,-1]) + kron((0:N),[1,1]));
Note that both of these vectors result in length = 2*N + 1.
The thing I'd like to point out is that if you create your vector of differences (e.g. [1 50 1 50 ...]), cumsum() really does the trick from there (you can also have more than 2 step sizes if you choose).
Let the input data be
step1 = 50;
step2 = 1;
start = 0;
number = 9; %// should be an odd number
Then:
n = (number-1)/2;
vector = cumsum([start reshape(([repmat(step1,1,n); repmat(step2,1,n)]),1,[])]);
The result in this example is
vector =
0 50 51 101 102 152 153 203 204

Efficiently generating unique pairs of integers

In MATLAB, I would like to generate n pairs of random integers in the range [1, m], where each pair is unique. For uniqueness, I consider the order of the numbers in the pair to be irrelevant such that [3, 10] is equal to [10, 3].
Also, each pair should consist of two distinct integers; i.e. [3, 4] is ok but [3, 3] would be rejected.
EDIT: Each possible pair should be chosen with equal likelihood.
(Obviously a constraint on the parameters is that n <= m(m-1)/2.)
I have been able to successfully do this when m is small, like so:
m = 500; n = 10; % setting parameters
A = ((1:m)'*ones(1, m)); % each column has the numbers 1 -> m
idxs1 = squareform(tril(A', -1))';
idxs2 = squareform(tril(A, -1))';
all_pairs = [idxs1, idxs2]; % this contains all possible pairs
idx_to_use = randperm( size(all_pairs, 1), n ); % choosing random n pairs
pairs = all_pairs(idx_to_use, :)
pairs =
254 414
247 334
111 146
207 297
45 390
229 411
9 16
75 395
12 338
25 442
However, the matrix A is of size m x m, meaning when m becomes large (e.g. upwards of 10,000), MATLAB runs out of memory.
I considered generating a load of random numbers randi(m, [n, 2]), and repeatedly rejecting the rows which repeated, but I was concerned about getting stuck in a loop when n was close to m(m-1)/2.
Is there an easier, cleaner way of generating unique pairs of distinct integers?
Easy, peasy, when viewed in the proper way.
You wish to generate n pairs of integers, [p,q], such that p and q lie in the interval [1,m], and p
How many possible pairs are there? The total number of pairs is just m*(m-1)/2. (I.e., the sum of the numbers from 1 to m-1.)
So we could generate n random integers in the range [1,m*(m-1)/2]. Randperm does this nicely. (Older matlab releases do not allow the second argument to randperm.)
k = randperm(m/2*(m-1),n);
(Note that I've written this expression with m in a funny way, dividing by 2 in perhaps a strange place. This avoids precision problems for some values of m near the upper limits.)
Now, if we associate each possible pair [p,q] with one of the integers in k, we can work backwards, from the integers generated in k, to a pair [p,q]. Thus the first few pairs in that list are:
{[1,2], [1,3], [2,3], [1,4], [2,4], [3,4], ..., [m-1,m]}
We can think of them as the elements in a strictly upper triangular array of size m by m, thus those elements above the main diagonal.
q = floor(sqrt(8*(k-1) + 1)/2 + 1/2);
p = k - q.*(q-1)/2;
See that these formulas recover p and q from the unrolled elements in k. We can convince ourselves that this does indeed work, but perhaps a simple way here is just this test:
k = 1:21;
q = floor(sqrt(8*(k-1) + 1)/2 + 3/2);
p = k - (q-1).*(q-2)/2;
[k;p;q]'
ans =
1 1 2
2 1 3
3 2 3
4 1 4
5 2 4
6 3 4
7 1 5
8 2 5
9 3 5
10 4 5
11 1 6
12 2 6
13 3 6
14 4 6
15 5 6
16 1 7
17 2 7
18 3 7
19 4 7
20 5 7
21 6 7
Another way of testing it is to show that all pairs get generated for a small case.
m = 5;
n = 10;
k = randperm(m/2*(m-1),n);
q = floor(sqrt(8*(k-1) + 1)/2 + 3/2);
p = k - (q-1).*(q-2)/2;
sortrows([p;q]',[2 1])
ans =
1 2
1 3
2 3
1 4
2 4
3 4
1 5
2 5
3 5
4 5
Yup, it looks like everything works perfectly. Now try it for some large numbers for m and n to test the time used.
tic
m = 1e6;
n = 100000;
k = randperm(m/2*(m-1),n);
q = floor(sqrt(8*(k-1) + 1)/2 + 3/2);
p = k - (q-1).*(q-2)/2;
toc
Elapsed time is 0.014689 seconds.
This scheme will work for m as large as roughly 1e8, before it fails due to precision errors in double precision. The exact limit should be m no larger than 134217728 before m/2*(m-1) exceeds 2^53. A nice feature is that no rejection for repeat pairs need be done.
This is more of a general approach rather then a matlab solution.
How about you do the following first you fill a vector like the following.
x[n] = rand()
x[n + 1] = x[n] + rand() %% where rand can be equal to 0.
Then you do the following again
x[n][y] = x[n][y] + rand() + 1
And if
x[n] == x[n+1]
You would make sure that the same pair is not already selected.
After you are done you can run a permutation algorithm on the matrix if you want them to be randomly spaced.
This approach will give you all the possibility or 2 integer pairs, and it runs in O(n) where n is the height of the matrix.
The following code does what you need:
n = 10000;
m = 500;
my_list = unique(sort(round(rand(n,2)*m),2),'rows');
my_list = my_list(find((my_list(:,1)==my_list(:,2))==0),:);
%temp = my_list; %In case you want to check what you initially generated.
while(size(my_list,1)~=n)
%my_list = unique([my_list;sort(round(rand(1,2)*m),2)],'rows');
%Changed as per #jucestain's suggestion.
my_list = unique([my_list;sort(round(rand((n-size(my_list,1)),2)*m),2)],'rows');
my_list = my_list(find((my_list(:,1)==my_list(:,2))==0),:);
end

MATLAB sorting two vectors by value

This is a fairly simple task I want to perform, but I can't seem to figure out a way to do it. I've tried sortrows, reshaping, and other solutions, but none of them do exactly what I want.
Essentially, I have two vectors from the same range of values, of unequal lengths. Some of the values are equal, some are not. E.g.
A = [1 5 20 30 53 70 92]
B = [2 3 4 16 20 30 60 95 100]
What I want to do is add "NaNs" to each vector to "stand in" for the values in the other vector that aren't shared. So, I want them to look like:
A = [1 NaN NaN NaN 5 NaN 20 30 53 NaN 70 92 NaN NaN]
B = [NaN 2 3 4 NaN 16 20 30 NaN 60 NaN NaN 95 100]
Some method by which the vector will have placeholders for the value of the other vector.
Do I combine the vectors, sort it, then somehow search and replace all values from the other vector with NaNs? That seems like a bit of a clunky solution, though not impossible. I feel like there is some more elegant way to accomplish this that I am missing.
Thanks!
Here is one solution using a simple map:
A = [1 5 20 30 53 70 92]
B = [2 3 4 16 20 30 60 95 100]
% map all A and B elements
% use 1 for A and 2 for B
map = zeros(max([A,B]),1);
map(A) = 1;
map(B) = bitor(map(B), 2);
% find the values present in either A, or B
[~,~,j] = find(map);
AA = nan(size(j));
BB = nan(size(j));
AA(bitand(j,1)~=0) = A;
BB(bitand(j,2)~=0) = B;
Comparison with Rodys solution shows this method is a bit faster:
A = unique(randi(10000, 1000, 1));
B = unique(randi(10000, 1000, 1));
tic;
for i=1:1000
map=zeros(10000,1);
map(A) = 1;
map(B) = bitor(map(B), 2);
[~,~,j] = find(map);
AA = nan(size(j));
BB = nan(size(j));
AA(bitand(j,1)~=0) = A;
BB(bitand(j,2)~=0) = B;
end
toc
tic
for i=1:1000
C = union(A,B);
Ap = NaN(size(C));
Ap(ismember(C,A)) = A;
Bp = NaN(size(C));
Bp(ismember(C,B)) = B;
end
toc
isequalwithequalnans(BB, Bp)
isequalwithequalnans(AA, Ap)
Elapsed time is 0.283828 seconds.
Elapsed time is 0.457204 seconds.
ans =
1
ans =
1
Well, here's one way:
% union of sets A and B
C = union(A,B);
% initialize new sets, check membership, and
% assign old values when applicable
Ap = NaN(size(C)); Ap(ismember(C,A)) = A;
Bp = NaN(size(C)); Bp(ismember(C,B)) = B;
Note that union gets rid of repititions. In case you want to keep all repetitions, use a manual sort and the second output of ismember:
% combine and sort, KEEPING repetitions
C = sort([A B]);
% initialize new sets, check membership, and
% assign old values when applicable
Ap = NaN(size(C)); Bp = NaN(size(C));
[I,Ab] = ismember(C,A); [I,Bb] = ismember(C,B);
Ap(I) = A(Ab(I)); Bp(I) = B(Bb(I));

Matrix "Zigzag" Reordering

I have an NxM matrix in MATLAB that I would like to reorder in similar fashion to the way JPEG reorders its subblock pixels:
(image from Wikipedia)
I would like the algorithm to be generic such that I can pass in a 2D matrix with any dimensions. I am a C++ programmer by trade and am very tempted to write an old school loop to accomplish this, but I suspect there is a better way to do it in MATLAB.
I'd be rather want an algorithm that worked on an NxN matrix and go from there.
Example:
1 2 3
4 5 6 --> 1 2 4 7 5 3 6 8 9
7 8 9
Consider the code:
M = randi(100, [3 4]); %# input matrix
ind = reshape(1:numel(M), size(M)); %# indices of elements
ind = fliplr( spdiags( fliplr(ind) ) ); %# get the anti-diagonals
ind(:,1:2:end) = flipud( ind(:,1:2:end) ); %# reverse order of odd columns
ind(ind==0) = []; %# keep non-zero indices
M(ind) %# get elements in zigzag order
An example with a 4x4 matrix:
» M
M =
17 35 26 96
12 59 51 55
50 23 70 14
96 76 90 15
» M(ind)
ans =
17 35 12 50 59 26 96 51 23 96 76 70 55 14 90 15
and an example with a non-square matrix:
M =
69 9 16 100
75 23 83 8
46 92 54 45
ans =
69 9 75 46 23 16 100 83 92 54 8 45
This approach is pretty fast:
X = randn(500,2000); %// example input matrix
[r, c] = size(X);
M = bsxfun(#plus, (1:r).', 0:c-1);
M = M + bsxfun(#times, (1:r).'/(r+c), (-1).^M);
[~, ind] = sort(M(:));
y = X(ind).'; %'// output row vector
Benchmarking
The following code compares running time with that of Amro's excellent answer, using timeit. It tests different combinations of matrix size (number of entries) and matrix shape (number of rows to number of columns ratio).
%// Amro's approach
function y = zigzag_Amro(M)
ind = reshape(1:numel(M), size(M));
ind = fliplr( spdiags( fliplr(ind) ) );
ind(:,1:2:end) = flipud( ind(:,1:2:end) );
ind(ind==0) = [];
y = M(ind);
%// Luis' approach
function y = zigzag_Luis(X)
[r, c] = size(X);
M = bsxfun(#plus, (1:r).', 0:c-1);
M = M + bsxfun(#times, (1:r).'/(r+c), (-1).^M);
[~, ind] = sort(M(:));
y = X(ind).';
%// Benchmarking code:
S = [10 30 100 300 1000 3000]; %// reference to generate matrix size
f = [1 1]; %// number of cols is S*f(1); number of rows is S*f(2)
%// f = [0.5 2]; %// plotted with '--'
%// f = [2 0.5]; %// plotted with ':'
t_Amro = NaN(size(S));
t_Luis = NaN(size(S));
for n = 1:numel(S)
X = rand(f(1)*S(n), f(2)*S(n));
f_Amro = #() zigzag_Amro(X);
f_Luis = #() zigzag_Luis(X);
t_Amro(n) = timeit(f_Amro);
t_Luis(n) = timeit(f_Luis);
end
loglog(S.^2*prod(f), t_Amro, '.b-');
hold on
loglog(S.^2*prod(f), t_Luis, '.r-');
xlabel('number of matrix entries')
ylabel('time')
The figure below has been obtained with Matlab R2014b on Windows 7 64 bits. Results in R2010b are very similar. It is seen that the new approach reduces running time by a factor between 2.5 (for small matrices) and 1.4 (for large matrices). Results are seen to be almost insensitive to matrix shape, given a total number of entries.
Here's a non-loop solution zig_zag.m. It looks ugly but it works!:
function [M,index] = zig_zag(M)
[r,c] = size(M);
checker = rem(hankel(1:r,r-1+(1:c)),2);
[rEven,cEven] = find(checker);
[cOdd,rOdd] = find(~checker.'); %'#
rTotal = [rEven; rOdd];
cTotal = [cEven; cOdd];
[junk,sortIndex] = sort(rTotal+cTotal);
rSort = rTotal(sortIndex);
cSort = cTotal(sortIndex);
index = sub2ind([r c],rSort,cSort);
M = M(index);
end
And a test matrix:
>> M = [magic(4) zeros(4,1)];
M =
16 2 3 13 0
5 11 10 8 0
9 7 6 12 0
4 14 15 1 0
>> newM = zig_zag(M) %# Zig-zag sampled elements
newM =
16
2
5
9
11
3
13
10
7
4
14
6
8
0
0
12
15
1
0
0
Here's a way how to do this. Basically, your array is a hankel matrix plus vectors of 1:m, where m is the number of elements in each diagonal. Maybe someone else has a neat idea on how to create the diagonal arrays that have to be added to the flipped hankel array without a loop.
I think this should be generalizeable to a non-square array.
% for a 3x3 array
n=3;
numElementsPerDiagonal = [1:n,n-1:-1:1];
hadaRC = cumsum([0,numElementsPerDiagonal(1:end-1)]);
array2add = fliplr(hankel(hadaRC(1:n),hadaRC(end-n+1:n)));
% loop through the hankel array and add numbers counting either up or down
% if they are even or odd
for d = 1:(2*n-1)
if floor(d/2)==d/2
% even, count down
array2add = array2add + diag(1:numElementsPerDiagonal(d),d-n);
else
% odd, count up
array2add = array2add + diag(numElementsPerDiagonal(d):-1:1,d-n);
end
end
% now flip to get the result
indexMatrix = fliplr(array2add)
result =
1 2 6
3 5 7
4 8 9
Afterward, you just call reshape(image(indexMatrix),[],1) to get the vector of reordered elements.
EDIT
Ok, from your comment it looks like you need to use sort like Marc suggested.
indexMatrixT = indexMatrix'; % ' SO formatting
[dummy,sortedIdx] = sort(indexMatrixT(:));
sortedIdx =
1 2 4 7 5 3 6 8 9
Note that you'd need to transpose your input matrix first before you index, because Matlab counts first down, then right.
Assuming X to be the input 2D matrix and that is square or landscape-shaped, this seems to be pretty efficient -
[m,n] = size(X);
nlim = m*n;
n = n+mod(n-m,2);
mask = bsxfun(#le,[1:m]',[n:-1:1]);
start_vec = m:m-1:m*(m-1)+1;
a = bsxfun(#plus,start_vec',[0:n-1]*m);
offset_startcol = 2- mod(m+1,2);
[~,idx] = min(mask,[],1);
idx = idx - 1;
idx(idx==0) = m;
end_ind = a([0:n-1]*m + idx);
offsets = a(1,offset_startcol:2:end) + end_ind(offset_startcol:2:end);
a(:,offset_startcol:2:end) = bsxfun(#minus,offsets,a(:,offset_startcol:2:end));
out = a(mask);
out2 = m*n+1 - out(end:-1:1+m*(n-m+1));
result = X([out2 ; out(out<=nlim)]);
Quick runtime tests against Luis's approach -
Datasize: 500 x 2000
------------------------------------- With Proposed Approach
Elapsed time is 0.037145 seconds.
------------------------------------- With Luis Approach
Elapsed time is 0.045900 seconds.
Datasize: 5000 x 20000
------------------------------------- With Proposed Approach
Elapsed time is 3.947325 seconds.
------------------------------------- With Luis Approach
Elapsed time is 6.370463 seconds.
Let's assume for a moment that you have a 2-D matrix that's the same size as your image specifying the correct index. Call this array idx; then the matlab commands to reorder your image would be
[~,I] = sort (idx(:)); %sort the 1D indices of the image into ascending order according to idx
reorderedim = im(I);
I don't see an obvious solution to generate idx without using for loops or recursion, but I'll think some more.