Scala lists and splitting - scala

I have a homework assignment that's having us use a list and splitting it into two parts with the elements in the first part are no greater than p, and the elements in the second part are greater than p. so it's like a quick sort, except we can't use any sorting. I really need some tips on how to go about this. I know I'm using cases, but I'm not familiar with how the list class works in scala. below is what I have so far, but in not sure how to go about the splitting of the 2 lists.
using
def split(p:Int, xs:List[Int]): List[Int] = {
xs match {
case Nil => (Nil, Nil)
case head :: tail =>
}

First off, you want split to return a pair of lists, so the return type needs to be (List[Int], List[Int]). However, working with pairs and lists together can often mean decomposing return values frequently. You may want to have an auxiliary function do the heavy lifting for you.
For instance, your auxiliary function might be given two lists, initially empty, and build up the contents until the first list is empty. The result would then be the pair of lists.
The next thing you have to decide in your recursive function design is, "What is the key decision?" In your case, it is "value no greater than p". That leads to the following code:
def split(p:Int, xs: List[Int]): (List[Int], List[Int]) = {
def splitAux(r: List[Int], ngt: List[Int], gt: List[Int]): (List[Int], List[Int]) =
r match {
case Nil => (ngt, gt)
case head :: rest if head <= p =>
splitAux(rest, head :: ngt, gt)
case head :: rest if head > p =>
splitAux(rest, ngt, head :: gt)
}
val (ngt, gt) = splitAux(xs, List(), List())
(ngt.reverse, gt.reverse)
}
The reversing step isn't strictly necessary, but probably is least surprising. Similarly, the second guard predicate makes explicit the path being taken.
However, there is a much simpler way: use builtin functionality.
def split(p:Int, xs: List[Int]): (List[Int], List[Int]) = {
(xs.filter(_ <= p), xs.filter(_ > p))
}
filter extracts only those items meeting the criterion. This solution walks the list twice, but since you have the reverse step in the previous solution, you are doing that anyway.

Related

Function takes two List[Int] arguments and produces a List[Int]. SCALA [duplicate]

This question already has answers here:
Scala - Combine two lists in an alternating fashion
(4 answers)
Closed 3 years ago.
The elements of the resulting list should alternate between the elements of the arguments. Assume that the two arguments have the same length.
USE RECURSION
My code as follows
val finalString = new ListBuffer[Int]
val buff2= new ListBuffer[Int]
def alternate(xs:List[Int], ys:List[Int]):List[Int] = {
while (xs.nonEmpty) {
finalString += xs.head + ys.head
alternate(xs.tail,ys.tail)
}
return finalString.toList
}
EXPECTED RESULT:
alternate ( List (1 , 3, 5) , List (2 , 4, 6)) = List (1 , 2, 3, 4, 6)
As far for the output, I don't get any output. The program is still running and cannot be executed.
Are there any Scala experts?
There are a few problems with the recursive solutions suggested so far (including yours, which would actually work, if you replace while with if): appending to end of list is a linear operation, making the whole thing quadratic (taking a .length of a list too, as well ас accessing elements by index), don't do that; also, if the lists are long, a recursion may require a lot of space on the stack, you should be using tail-recursion whenever possible.
Here is a solution that is free of both those problems: it builds the output backwards, by prepending elements to the list (constant time operation) rather than appending them, and reverses the result at the end. It is also tail-recursive: the recursive call is the last operation in the function, which allows the compiler to convert it into a loop, so that it will only use a single stack frame for execution regardless of the size of the lists.
#tailrec
def alternate(
a: List[Int],
b: List[Int],
result: List[Int] = Nil
): List[Int] = (a,b) match {
case (Nil, _) | (_, Nil) => result.reversed
case (ah :: at, bh :: bt) => alternate(at, bt, bh :: ah :: result)
}
(if the lists are of different lengths, the whole thing stops when the shortest one ends, and whatever is left in the longer one is thrown out. You may want to modify the first case (split it into two, perhaps) if you desire a different behavior).
BTW, your own solution is actually better than most suggested here: it is actually tail recursive (or rather can be made one if you add else after your if, which is now while), and appending to ListBuffer isn't actually as bad as to a List. But using mutable state is generally considered "code smell" in scala, and should be avoided (that's one of the main ideas behind using recursion instead of loops in the first place).
Condition xs.nonEmpty is true always so you have infinite while loop.
Maybe you meant if instead of while.
A more Scala-ish approach would be something like:
def alternate(xs: List[Int], ys: List[Int]): List[Int] = {
xs.zip(ys).flatMap{case (x, y) => List(x, y)}
}
alternate(List(1,3,5), List(2,4,6))
// List(1, 2, 3, 4, 5, 6)
A recursive solution using match
def alternate[T](a: List[T], b: List[T]): List[T] =
(a, b) match {
case (h1::t1, h2::t2) =>
h1 +: h2 +: alternate(t1, t2)
case _ =>
a ++ b
}
This could be more efficient at the cost of clarity.
Update
This is the more efficient solution:
def alternate[T](a: List[T], b: List[T]): List[T] = {
#annotation.tailrec
def loop(a: List[T], b: List[T], res: List[T]): List[T] =
(a, b) match {
case (h1 :: t1, h2 :: t2) =>
loop(t1, t2, h2 +: h1 +: res)
case _ =>
a ++ b ++ res.reverse
}
loop(a, b, Nil)
}
This retains the original function signature but uses an inner function that is an efficient, tail-recursive implementation of the algorithm.
You're accessing variables from outside the method, which is bad. I would suggest something like the following:
object Main extends App {
val l1 = List(1, 3, 5)
val l2 = List(2, 4, 6)
def alternate[A](l1: List[A], l2: List[A]): List[A] = {
if (l1.isEmpty || l2.isEmpty) List()
else List(l1.head,l2.head) ++ alternate(l1.tail, l2.tail)
}
println(alternate(l1, l2))
}
Still recursive but without accessing state from outside the method.
Assuming both lists are of the same length, you can use a ListBuffer to build up the alternating list. alternate is a pure function:
import scala.collection.mutable.ListBuffer
object Alternate extends App {
def alternate[T](xs: List[T], ys: List[T]): List[T] = {
val buffer = new ListBuffer[T]
for ((x, y) <- xs.zip(ys)) {
buffer += x
buffer += y
}
buffer.toList
}
alternate(List(1, 3, 5), List(2, 4, 6)).foreach(println)
}

Second Element of a List

From the Book programming in Scala I got the following line of code:
val second: List[ Int] => Int = { case x :: y :: _ => y }
//warning: match may not be exhaustive.
It states that this function will return the second element of a list of integers if the list is not empty or nil. Stil this part is a bit awkward to me:
case x :: y :: _
How does this ecxactly work? Does this mathches any list with at least 2 Elements and than return the second? If so can somebody still explain the syntax? I understood that :: is invoked on the right operand. So it could be written as
(_.::(y)).::(X)
Still I than don't get why this would return 2
val second: List[ Int] => Int = { case x :: y :: _ => y }
var x = List(1,2)
second(x) //returns 2
In the REPL, you can type:
scala> val list = "a" :: "b" :: Nil
list: List[String] = List(a, b)
which is to be read from right to left, and means take the end of a List (Nil), prepend String "b" and to this List ("b" :: Nil) prepend String a, a :: ("b" :: Nil) but you don't need the parens, so it can be written "a" :: "b" :: Nil.
In pattern matching you will more often see:
... list match {
case Nil => // ...
case x :: xs => // ...
}
to distinguish between empty list, and nonempty, where xs might be a rest of list, but matches Nil too, if the whole list is ("b" :: Nil) for example, then x="b" and xs=Nil.
But if list= "a" :: "b" :: Nil, then x="a" and xs=(b :: Nil).
In your example, the deconstruction is just one more step, and instead of a name like xs, the joker sign _ is used, indicating, that the name is probably not used and doesn't play a role.
The value second is of function type, it takes List[Int] and returns Int.
If the list has first element ("x"), and a second element ("y"), and whatever comes next (we don't care about it), we simply return the element "y" (which is the second element of the list).
In any other case, the function is not defined. You can check that:
scala> val second: PartialFunction[List[Int], Int] = {
| case x :: y :: _ => y
| }
second: PartialFunction[List[Int],Int] = <function1>
scala> second.isDefinedAt(List(1,2,3))
res18: Boolean = true
scala> second.isDefinedAt(List(1,2))
res19: Boolean = true
scala> second.isDefinedAt(List(0))
res20: Boolean = false
First of all. When you think about pattern matching you should think about matching a structure.
The first part of the case statement describes a structure. This structure may describe one or more things (variables) which are useful to deriving your result.
In your example, you are interested in deriving the second element of a list. A shorthand to build a list in Scala is to use :: method (also called cons). :: can also be used to describe a structure in case statement. At this time, you shouldn't think about evaluation of the :: method in first part of case. May be that's why you are saying about evaluation of _.::(y).::(x). The :: cons operator help us describe the structure of the list in terms of its elements. In this case, the first element (x) , the second element (y) and the rest of it (_ wildcard). We are interested in a structure that is a list with at least 2 elements and the third can be anything - a Nil to indicate end of list or another element - hence the wildcard.
The second part of the case statement, uses the second element to derive the result (y).
More on List and Consing
List in Scala is similar to a LinkedList. You know about the first element called head and start of the rest of the list. When traversing the linked list you stop if the rest of the list is Nil. This :: cons operator helps us visualise the structure of the linked list. Although Scala compile would actually be calling :: methods evaluating from right to left as you described _.::(y).::(x)
As an aside, you might have already noticed that the Scala compiler might be complain that your match isn't exhaustive. This means that this second method would work for list of any size. Because there isn't any case statement to describe list with zero or one element. Also, as mentioned in comments of previous answers, if you aren't interested in first element you can describe it as a wildcard _.
case _ :: y :: _ => y
I hope this helped.
If you see the structure of list in scala its head::tail, first element is treated as head and all remaining ones as tail(Nil will be the last element of tail). whenever you do x::y::_, x will match the head of the list and remaining will be tail and again y will match the head of the next list(tail of first list)
eg:
val l = List(1,2,3,4,5)
you can see this list in differnt ways:
1::2::3::4::5::Nil
1::List(2,3,4,5)
1::2::List(2,3,4,5)
and so on
So try matching the pattern. In your question y will give the second element

Scala - finding a specific tuple in a list

Let's say we have this list of tuples:
val data = List(('a', List(1, 0)), ('b', List(1, 1)), ('c', List(0)))
The list has this signature:
List[(Char, List[Int])]
My task is to get the "List[Int]" element from a tuple inside "data" whose key is, for instance, letter "b". If I implement a method like "findIntList(data, 'b')", then I expect List(1, 1) as a result. I have tried the following approaches:
data.foreach { elem => if (elem._1 == char) return elem._2 }
data.find(x=> x._1 == ch)
for (elem <- data) yield elem match {case (x, y: List[Bit]) => if (x == char) y}
for (x <- data) yield if (x._1 == char) x._2
With all the approaches (except Approach 1, where I employ an explicit "return"), I get either a List[Option] or List[Any] and I don't know how to extract the "List[Int]" out of it.
One of many ways:
data.toMap.get('b').get
toMap converts a list of 2-tuples into a Map from the first element of the tuples to the second. get gives you the value for the given key and returns an Option, thus you need another get to actually get the list.
Or you can use:
data.find(_._1 == 'b').get._2
Note: Only use get on Option when you can guarantee that you'll have a Some and not a None. See http://www.scala-lang.org/api/current/index.html#scala.Option for how to use Option idiomatic.
Update: Explanation of the result types you see with your different approaches
Approach 2: find returns an Option[List[Int]] because it can not guarantee that a matching element gets found.
Approach 3: here you basically do a map, i.e. you apply a function to each element of your collection. For the element you are looking for the function returns your List[Int] for all other elements it contains the value () which is the Unit value, roughly equivalent to void in Java, but an actual type. Since the only common super type of ´List[Int]´ and ´Unit´ is ´Any´ you get a ´List[Any]´ as the result.
Approach 4 is basically the same as #3
Another way is
data.toMap.apply('b')
Or with one intermediate step this is even nicer:
val m = data.toMap
m('b')
where apply is used implicitly, i.e., the last line is equivalent to
m.apply('b')
There are multiple ways of doing it. One more way:
scala> def listInt(ls:List[(Char, List[Int])],ch:Char) = ls filter (a => a._1 == ch) match {
| case Nil => List[Int]()
| case x ::xs => x._2
| }
listInt: (ls: List[(Char, List[Int])], ch: Char)List[Int]
scala> listInt(data, 'b')
res66: List[Int] = List(1, 1)
You can try something like(when you are sure it exists) simply by adding type information.
val char = 'b'
data.collect{case (x,y:List[Int]) if x == char => y}.head
or use headOption if your not sure the character exists
data.collect{case (x,y:List[Int]) if x == char => y}.headOption
You can also solve this using pattern matching. Keep in mind you need to make it recursive though. The solution should look something like this;
def findTupleValue(tupleList: List[(Char, List[Int])], char: Char): List[Int] = tupleList match {
case (k, list) :: _ if char == k => list
case _ :: theRest => findTupleValue(theRest, char)
}
What this will do is walk your tuple list recursively. Check whether the head element matches your condition (the key you are looking for) and then returns it. Or continues with the remainder of the list.

difference between foldLeft and reduceLeft in Scala

I have learned the basic difference between foldLeft and reduceLeft
foldLeft:
initial value has to be passed
reduceLeft:
takes first element of the collection as initial value
throws exception if collection is empty
Is there any other difference ?
Any specific reason to have two methods with similar functionality?
Few things to mention here, before giving the actual answer:
Your question doesn't have anything to do with left, it's rather about the difference between reducing and folding
The difference is not the implementation at all, just look at the signatures.
The question doesn't have anything to do with Scala in particular, it's rather about the two concepts of functional programming.
Back to your question:
Here is the signature of foldLeft (could also have been foldRight for the point I'm going to make):
def foldLeft [B] (z: B)(f: (B, A) => B): B
And here is the signature of reduceLeft (again the direction doesn't matter here)
def reduceLeft [B >: A] (f: (B, A) => B): B
These two look very similar and thus caused the confusion. reduceLeft is a special case of foldLeft (which by the way means that you sometimes can express the same thing by using either of them).
When you call reduceLeft say on a List[Int] it will literally reduce the whole list of integers into a single value, which is going to be of type Int (or a supertype of Int, hence [B >: A]).
When you call foldLeft say on a List[Int] it will fold the whole list (imagine rolling a piece of paper) into a single value, but this value doesn't have to be even related to Int (hence [B]).
Here is an example:
def listWithSum(numbers: List[Int]) = numbers.foldLeft((List.empty[Int], 0)) {
(resultingTuple, currentInteger) =>
(currentInteger :: resultingTuple._1, currentInteger + resultingTuple._2)
}
This method takes a List[Int] and returns a Tuple2[List[Int], Int] or (List[Int], Int). It calculates the sum and returns a tuple with a list of integers and it's sum. By the way the list is returned backwards, because we used foldLeft instead of foldRight.
Watch One Fold to rule them all for a more in depth explanation.
reduceLeft is just a convenience method. It is equivalent to
list.tail.foldLeft(list.head)(_)
foldLeft is more generic, you can use it to produce something completely different than what you originally put in. Whereas reduceLeft can only produce an end result of the same type or super type of the collection type. For example:
List(1,3,5).foldLeft(0) { _ + _ }
List(1,3,5).foldLeft(List[String]()) { (a, b) => b.toString :: a }
The foldLeft will apply the closure with the last folded result (first time using initial value) and the next value.
reduceLeft on the other hand will first combine two values from the list and apply those to the closure. Next it will combine the rest of the values with the cumulative result. See:
List(1,3,5).reduceLeft { (a, b) => println("a " + a + ", b " + b); a + b }
If the list is empty foldLeft can present the initial value as a legal result. reduceLeft on the other hand does not have a legal value if it can't find at least one value in the list.
For reference, reduceLeft will error if applied to an empty container with the following error.
java.lang.UnsupportedOperationException: empty.reduceLeft
Reworking the code to use
myList foldLeft(List[String]()) {(a,b) => a+b}
is one potential option. Another is to use the reduceLeftOption variant which returns an Option wrapped result.
myList reduceLeftOption {(a,b) => a+b} match {
case None => // handle no result as necessary
case Some(v) => println(v)
}
The basic reason they are both in Scala standard library is probably because they are both in Haskell standard library (called foldl and foldl1). If reduceLeft wasn't, it would quite often be defined as a convenience method in different projects.
From Functional Programming Principles in Scala (Martin Odersky):
The function reduceLeft is defined in terms of a more general function, foldLeft.
foldLeft is like reduceLeft but takes an accumulator z, as an additional parameter, which is returned when foldLeft is called on an empty list:
(List (x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ...) op x
[as opposed to reduceLeft, which throws an exception when called on an empty list.]
The course (see lecture 5.5) provides abstract definitions of these functions, which illustrates their differences, although they are very similar in their use of pattern matching and recursion.
abstract class List[T] { ...
def reduceLeft(op: (T,T)=>T) : T = this match{
case Nil => throw new Error("Nil.reduceLeft")
case x :: xs => (xs foldLeft x)(op)
}
def foldLeft[U](z: U)(op: (U,T)=>U): U = this match{
case Nil => z
case x :: xs => (xs foldLeft op(z, x))(op)
}
}
Note that foldLeft returns a value of type U, which is not necessarily the same type as List[T], but reduceLeft returns a value of the same type as the list).
To really understand what are you doing with fold/reduce,
check this: http://wiki.tcl.tk/17983
very good explanation. once you get the concept of fold,
reduce will come together with the answer above:
list.tail.foldLeft(list.head)(_)
Scala 2.13.3, Demo:
val names = List("Foo", "Bar")
println("ReduceLeft: "+ names.reduceLeft(_+_))
println("ReduceRight: "+ names.reduceRight(_+_))
println("Fold: "+ names.fold("Other")(_+_))
println("FoldLeft: "+ names.foldLeft("Other")(_+_))
println("FoldRight: "+ names.foldRight("Other")(_+_))
outputs:
ReduceLeft: FooBar
ReduceRight: FooBar
Fold: OtherFooBar
FoldLeft: OtherFooBar
FoldRight: FooBarOther

Selection sort in functional Scala

I'm making my way through "Programming in Scala" and wrote a quick implementation of the selection sort algorithm. However, since I'm still a bit green in functional programming, I'm having trouble translating to a more Scala-ish style. For the Scala programmers out there, how can I do this using Lists and vals rather than falling back into my imperative ways?
http://gist.github.com/225870
As starblue already said, you need a function that calculates the minimum of a list and returns the list with that element removed. Here is my tail recursive implementation of something similar (as I believe foldl is tail recursive in the standard library), and I tried to make it as functional as possible :). It returns a list that contains all the elements of the original list (but kindof reversed - see the explanation below) with the minimum as a head.
def minimum(xs: List[Int]): List[Int] =
(List(xs.head) /: xs.tail) {
(ys, x) =>
if(x < ys.head) (x :: ys)
else (ys.head :: x :: ys.tail)
}
This basically does a fold, starting with a list containing of the first element of xs If the first element of xs is smaller than the head of that list, we pre-append it to the list ys. Otherwise, we add it to the list ys as the second element. And so on recursively, we've folded our list into a new list containing the minimum element as a head and a list containing all the elements of xs (not necessarily in the same order) with the minimum removed, as a tail. Note that this function does not remove duplicates.
After creating this helper function, it's now easy to implement selection sort.
def selectionSort(xs: List[Int]): List[Int] =
if(xs.isEmpty) List()
else {
val ys = minimum(xs)
if(ys.tail.isEmpty)
ys
else
ys.head :: selectionSort(ys.tail)
}
Unfortunately this implementation is not tail recursive, so it will blow up the stack for large lists. Anyway, you shouldn't use a O(n^2) sort for large lists, but still... it would be nice if the implementation was tail recursive. I'll try to think of something... I think it will look like the implementation of a fold.
Tail Recursive!
To make it tail recursive, I use quite a common pattern in functional programming - an accumulator. It works a bit backward, as now I need a function called maximum, which basically does the same as minimum, but with the maximum element - its implementation is exact as minimum, but using > instead of <.
def selectionSort(xs: List[Int]) = {
def selectionSortHelper(xs: List[Int], accumulator: List[Int]): List[Int] =
if(xs.isEmpty) accumulator
else {
val ys = maximum(xs)
selectionSortHelper(ys.tail, ys.head :: accumulator)
}
selectionSortHelper(xs, Nil)
}
EDIT: Changed the answer to have the helper function as a subfunction of the selection sort function.
It basically accumulates the maxima to a list, which it eventually returns as the base case. You can also see that it is tail recursive by replacing accumulator by throw new NullPointerException - and then inspect the stack trace.
Here's a step by step sorting using an accumulator. The left hand side shows the list xs while the right hand side shows the accumulator. The maximum is indicated at each step by a star.
64* 25 12 22 11 ------- Nil
11 22 12 25* ------- 64
22* 12 11 ------- 25 64
11 12* ------- 22 25 64
11* ------- 12 22 25 64
Nil ------- 11 12 22 25 64
The following shows a step by step folding to calculate the maximum:
maximum(25 12 64 22 11)
25 :: Nil /: 12 64 22 11 -- 25 > 12, so it stays as head
25 :: 12 /: 64 22 11 -- same as above
64 :: 25 12 /: 22 11 -- 25 < 64, so the new head is 64
64 :: 22 25 12 /: 11 -- and stays so
64 :: 11 22 25 12 /: Nil -- until the end
64 11 22 25 12
You should have problems doing selection sort in functional style, as it is an in-place sort algorithm. In-place, by definition, isn't functional.
The main problem you'll face is that you can't swap elements. Here's why this is important. Suppose I have a list (a0 ... ax ... an), where ax is the minimum value. You need to get ax away, and then compose a list (a0 ... ax-1 ax+1 an). The problem is that you'll necessarily have to copy the elements a0 to ax-1, if you wish to remain purely functional. Other functional data structures, particularly trees, can have better performance than this, but the basic problem remains.
here is another implementation of selection sort (generic version).
def less[T <: Comparable[T]](i: T, j: T) = i.compareTo(j) < 0
def swap[T](xs: Array[T], i: Int, j: Int) { val tmp = xs(i); xs(i) = xs(j); xs(j) = tmp }
def selectiveSort[T <: Comparable[T]](xs: Array[T]) {
val n = xs.size
for (i <- 0 until n) {
val min = List.range(i + 1, n).foldLeft(i)((a, b) => if (less(xs(a), xs(b))) a else b)
swap(xs, i, min)
}
}
You need a helper function which does the selection. It should return the minimal element and the rest of the list with the element removed.
I think it's reasonably feasible to do a selection sort in a functional style, but as Daniel indicated, it has a good chance of performing horribly.
I just tried my hand at writing a functional bubble sort, as a slightly simpler and degenerate case of selection sort. Here's what I did, and this hints at what you could do:
define bubble(data)
if data is empty or just one element: return data;
otherwise, if the first element < the second,
return first element :: bubble(rest of data);
otherwise, return second element :: bubble(
first element :: (rest of data starting at 3rd element)).
Once that's finished recursing, the largest element is at the end of the list. Now,
define bubblesort [data]
apply bubble to data as often as there are elements in data.
When that's done, your data is indeed sorted. Yes, it's horrible, but my Clojure implementation of this pseudocode works.
Just concerning yourself with the first element or two and then leaving the rest of the work to a recursed activity is a lisp-y, functional-y way to do this kind of thing. But once you've gotten your mind accustomed to that kind of thinking, there are more sensible approaches to the problem.
I would recommend implementing a merge sort:
Break list into two sub-lists,
either by counting off half the elements into one sublist
and the rest in the other,
or by copying every other element from the original list
into either of the new lists.
Sort each of the two smaller lists (recursion here, obviously).
Assemble a new list by selecting the smaller from the front of either sub-list
until you've exhausted both sub-lists.
The recursion is in the middle of that, and I don't see a clever way of making the algorithm tail recursive. Still, I think it's O(log-2) in time and also doesn't place an exorbitant load on the stack.
Have fun, good luck!
Thanks for the hints above, they were very inspiring. Here's another functional approach to the selection sort algorithm. I tried to base it on the following idea: finding a max / min can be done quite easily by min(A)=if A=Nil ->Int.MaxValue else min(A.head, min(A.tail)). The first min is the min of a list, the second the min of two numbers. This is easy to understand, but unfortunately not tail recursive. Using the accumulator method the min definition can be transformed like this, now in correct Scala:
def min(x: Int,y: Int) = if (x<y) x else y
def min(xs: List[Int], accu: Int): Int = xs match {
case Nil => accu
case x :: ys => min(ys, min(accu, x))
}
(This is tail recursive)
Now a min version is needed which returns a list leaving out the min value. The following function returns a list whose head is the min value, the tail contains the rest of the original list:
def minl(xs: List[Int]): List[Int] = minl(xs, List(Int.MaxValue))
def minl(xs: List[Int],accu:List[Int]): List[Int] = xs match {
// accu always contains min as head
case Nil => accu take accu.length-1
case x :: ys => minl(ys,
if (x<accu.head) x::accu else accu.head :: x :: accu.tail )
}
Using this selection sort can be written tail recursively as:
def ssort(xs: List[Int], accu: List[Int]): List[Int] = minl(xs) match {
case Nil => accu
case min :: rest => ssort(rest, min::accu)
}
(reverses the order). In a test with 10000 list elements this algorithm is only about 4 times slower than the usual imperative algorithm.
Even though, when coding Scala, I'm used to prefer functional programming style (via combinators or recursion) over imperative style (via variables and iterations), THIS TIME, for this specific problem, old school imperative nested loops result in simpler and more performant code.
I don't think falling back to imperative style is a mistake for certain classes of problems, such as sorting algorithms which usually transform the input buffer in place rather than resulting to a new collection.
My solution is:
package bitspoke.algo
import scala.math.Ordered
import scala.collection.mutable.Buffer
abstract class Sorter[T <% Ordered[T]] {
// algorithm provided by subclasses
def sort(buffer : Buffer[T]) : Unit
// check if the buffer is sorted
def sorted(buffer : Buffer[T]) = buffer.isEmpty || buffer.view.zip(buffer.tail).forall { t => t._2 > t._1 }
// swap elements in buffer
def swap(buffer : Buffer[T], i:Int, j:Int) {
val temp = buffer(i)
buffer(i) = buffer(j)
buffer(j) = temp
}
}
class SelectionSorter[T <% Ordered[T]] extends Sorter[T] {
def sort(buffer : Buffer[T]) : Unit = {
for (i <- 0 until buffer.length) {
var min = i
for (j <- i until buffer.length) {
if (buffer(j) < buffer(min))
min = j
}
swap(buffer, i, min)
}
}
}
As you can see, to achieve parametric polymorphism, rather than using java.lang.Comparable, I preferred scala.math.Ordered and Scala View Bounds rather than Upper Bounds. That's certainly works thanks to Scala Implicit Conversions of primitive types to Rich Wrappers.
You can write a client program as follows:
import bitspoke.algo._
import scala.collection.mutable._
val sorter = new SelectionSorter[Int]
val buffer = ArrayBuffer(3, 0, 4, 2, 1)
sorter.sort(buffer)
assert(sorter.sorted(buffer))
A simple functional program for selection-sort in Scala
def selectionSort(list:List[Int]):List[Int] = {
#tailrec
def selectSortHelper(list:List[Int], accumList:List[Int] = List[Int]()): List[Int] = {
list match {
case Nil => accumList
case _ => {
val min = list.min
val requiredList = list.filter(_ != min)
selectSortHelper(requiredList, accumList ::: List.fill(list.length - requiredList.length)(min))
}
}
}
selectSortHelper(list)
}
You may want to try replacing your while loops with recursion, so, you have two places where you can create new recursive functions.
That would begin to get rid of some vars.
This was probably the toughest lesson for me, trying to move more toward FP.
I hesitate to show solutions here, as I think it would be better for you to try first.
But, if possible you should be using tail-recursion, to avoid problems with stack overflows (if you are sorting a very, very large list).
Here is my point of view on this problem: SelectionSort.scala
def selectionsort[A <% Ordered[A]](list: List[A]): List[A] = {
def sort(as: List[A], bs: List[A]): List[A] = as match {
case h :: t => select(h, t, Nil, bs)
case Nil => bs
}
def select(m: A, as: List[A], zs: List[A], bs: List[A]): List[A] =
as match {
case h :: t =>
if (m > h) select(m, t, h :: zs, bs)
else select(h, t, m :: zs, bs)
case Nil => sort(zs, m :: bs)
}
sort(list, Nil)
}
There are two inner functions: sort and select, which represents two loops in original algorithm. The first function sort iterates through the elements and call select for each of them. When the source list is empty it return bs list as result, which is initially Nil. The sort function tries to search for maximum (not minimum, since we build result list in reversive order) element in source list. It suppose that maximum is head by the default and then just replace it with a proper value.
This is 100% functional implementation of Selection Sort in Scala.
Here is my solution
def sort(list: List[Int]): List[Int] = {
#tailrec
def pivotCompare(p: Int, l: List[Int], accList: List[Int] = List.empty): List[Int] = {
l match {
case Nil => p +: accList
case x :: xs if p < x => pivotCompare(p, xs, accList :+ x)
case x :: xs => pivotCompare(x, xs, accList :+ p)
}
}
#tailrec
def loop(list: List[Int], accList: List[Int] = List.empty): List[Int] = {
list match {
case x :: xs =>
pivotCompare(x, xs) match {
case Nil => accList
case h :: tail => loop(tail, accList :+ h)
}
case Nil => accList
}
}
loop(list)
}