I am implementing a way to quickly find changes in the sources of my datawarehouse.
After couple of try we have found the hashing all the attribute of a given table and comparing it to the target is one of the most efficient way to compare it.
However the non negligible issue for us is the collision risk. Because I need to trust my data 100%
My understanding is that with SHA-512 it should be close to 0 (2^-256...). But what we cannot find is if the length of my input string can influence the probaility of collision.
Because in the case of a table with 20 field I am confident it will work, but for a table with 280 fields some of them having free text ... I want to be sure.
I know the maximum length of a string is 2^128 but does hashing a longer string of 20.000 character instead of 200, will raise the probability of a collision ?
Thanks for your help.
Hashing algorithms internal functions always work with fixed-length inputs. So when hashing long strings it will split the string into data blocks that are as long as the required input length of the internal function (padding the last one if necessary). Then it will loop over the blocks and combine the output of a block with the current state, the combined output from all the previous blocks.
It's been shown that this construct makes the final hash as much resistant to collision as the internal function. Check the Merkle–Damgård construction (used in SHA-512) article.
Related
Bit of an odd question, but tldr, I need an algorithm that will generate a unique fixed length hash that doesn't output any numbers. Is this even possible?
The names of my tables can sometimes be way too long (they are generated based on parameters and can exceed the 63 character limit enforced by PostgreSQL). Thus, I need a way too shorten the names of those tables while avoiding as much collision as possible. And the names shouldn't include any numbers.
I want to hashed a String into a hashed object which has some numerical values NSNumber/Int as an output instead of alpha-numeric values.
The problem is that after digging through swift and some 3rd party library, I'm not able to find any library that suffices our need.
I'm working on a Chat SDK and it takes NSNumber/Int as unique identifier to co-relate Chat Message and Conversation Message.
My company demand is not to store any addition field onto the database
or change the schema that we have which complicates thing.
A neat solution my team came with was some sort of hashed function that generates number.
func userIdToConversationNumber(id:String) -> NSNumber
We can use that function to convert String to NSNumber/Int. This Int should be produced by that function and probability of colliding should be negligible. Any suggestion on any approach.
The key calculation you need to perform is the birthday bound. My favorite table is the one in Wikipedia, and I reference it regularly when I'm designing systems like this one.
The table expresses how many items you can hash for a given hash size before you have a certain expectation of a collision. This is based on a perfectly uniform hash, which a cryptographic hash is a close approximation of.
So for a 64-bit integer, after hashing 6M elements, there is a 1-in-a-million chance that there was a single collision anywhere in that list. After hashing 20M elements, there is a 1-in-a-thousand chance that there was a single collision. And after 5 billion elements, you should bet on a collision (50% chance).
So it all comes down to how many elements you plan to hash and how bad it is if there is a collision (would it create a security problem? can you detect it? can you do anything about it like change the input data?), and of course how much risk you're willing to take for the given problem.
Personally, I'm a 1-in-a-million type of person for these things, though I've been convinced to go down to 1-in-a-thousand at times. (Again, this is not 1:1000 chance of any given element colliding; that would be horrible. This is 1:1000 chance of there being a collision at all after hashing some number of elements.) I would not accept 1-in-a-million in situations where an attacker can craft arbitrary things (of arbitrary size) for you to hash. But I'm very comfortable with it for structured data (email addresses, URLs) of constrained length.
If these numbers work for you, then what you want is a hash that is highly uniform in all its bits. And that's a SHA hash. I'd use a SHA-2 (like SHA-256) because you should always use SHA-2 unless you have a good reason not to. Since SHA-2's bits are all independent of each other (or at least that's its intent), you can select any number of its bits to create a shorter hash. So you compute a SHA-256, and take the top (or bottom) 64-bits as an integer, and that's your hash.
As a rule, for modest sized things, you can get away with this in 64 bits. You cannot get away with this in 32 bits. So when you say "NSNumber/Int", I want you to mean explicitly "64-bit integer." For example, on a 32-bit platform, Swift's Int is only 32 bits, so I would use UInt64 or uint64_t, not Int or NSInteger. I recommend unsigned integers here because these are really unique bit patterns, not "numbers" (i.e. it is not meaningful to add or multiply them) and having negative values tends to be confusing in identifiers unless there is some semantic meaning to it.
Note that everything said about hashes here is also true of random numbers, if they're generated by a cryptographic random number generator. In fact, I generally use random numbers for these kinds of problems. For example, if I want clients to generate their own random unique IDs for messages, how many bits do I need to safely avoid collisions? (In many of my systems, you may not be able to use all the bits in your value; some may be used as flags.)
That's my general solution, but there's an even better solution if your input space is constrained. If your input space is smaller than 2^64, then you don't need hashing at all. Obviously, any Latin-1 string up to 8 characters can be stored in a 64-bit value. But if your input is even more constrained, then you can compress the data and get slightly longer strings. It only takes 5 bits to encode 26 symbols, so you can store a 12 letter string (of a single Latin case) in a UInt64 if you're willing to do the math. It's pretty rare that you get lucky enough to use this, but it's worth keeping in the back of your mind when space is at a premium.
I've built a lot of these kinds of systems, and I will say that eventually, we almost always wind up just making a longer identifier. You can make it work on a small identifier, but it's always a little complicated, and there is nothing as effective as just having more bits.... Best of luck till you get there.
Yes, you can create a hashes that are collision resistant using a cryptographic hash function. The output of such a hash function is in bits if you follow the algorithms specifications. However, implementations will generally only return bytes or an encoding of the byte values. A hash does not return a number, as other's have indicated in the comments.
It is relatively easy to convert such a hash into a number of 32 bites such as an Int or Int32. You just take the leftmost bytes of the hash and interpret those to be an unsigned integer.
However, a cryptographic hash has a relatively large output size precisely to make sure that the chance of collisions is small. Collisions are prone to the birthday problem, which means that you only have to try about 2 to the power of hLen divided by 2 inputs to create a collision within the generated set. E.g. you'd need 2^80 tries to create a collision of RIPEMD-160 hashes.
Now for most cryptographic hashes, certainly the common ones, the same rule counts. That means that for 32 bit hash that you'd only need 2^16 hashes to be reasonably sure that you have a collision. That's not good, 65536 tries are very easy to accomplish. And somebody may get lucky, e.g. after 256 tries you'd have a 1 in 256 chance of a collision. That's no good.
So calculating a hash value to use it as ID is fine, but you'd need the full output of a hash function, e.g. 256 bits of SHA-2 to be very sure you don't have a collision. Otherwise you may need to use something line a serial number instead.
I am currently working on a streaming API that generates a lot of textual content. As expected, the API gives out a lot of duplicates and we also have a business requirement to filter near duplicate data.
I did a bit of research on duplicate detection in data streams and read about Stable Bloom Filters. Stable bloom filters are data structures for duplicate detection in data streams with an upper bound on the false positive rate.
But, I want to identify near duplicates and I also looked at Hashing Algorithms like LSH and MinHash that are used in Nearest Neighbour problems and Near Duplicate Detection.
I am kind of stuck and looking for pointers as to how to proceed and papers/implementations that I could look at?
First, normalize the text to all lowercase (or uppercase) characters, replace all non-letters with a white space, compress all multiple white spaces to one, remove leading and trailing white space; for speed I would perform all these operations in one pass of the text. Next take the MD5 hash (or something faster) of the resulting string. Do a database lookup of the MD5 hash (as two 64 bit integers) in a table, if it exists, it is an exact duplicate, if not, add it to the table and proceed to the next step. You will want to age off old hashes based either on time or memory usage.
To find near duplicates the normalized string needs to be converted into potential signatures (hashes of substrings), see the SpotSigs paper and blog post by Greg Linden. Suppose the routine Sigs() does that for a given string, that is, given the normalized string x, Sigs(x) returns a small (1-5) set of 64 bit integers. You could use something like the SpotSigs algorithm to select the substrings in the text for the signatures, but making your own selection method could perform better if you know something about your data. You may also want to look at the simhash algorithm (the code is here).
Given the Sigs() the problem of efficiently finding the near duplicates is commonly called the set similarity joins problem. The SpotSigs paper outlines some heuristics to trim the number of sets a new set needs to be compared to as does the simhash method.
http://micvog.com/2013/09/08/storm-first-story-detection/ has some nice implementation notes
I was reading this question on MD5 hash values and the accepted answer confuses me. One of the main properties, as I understand it, of a cryptopgraphic hash function is that it is infeasible to find two different messages (inputs) with the same hash value.
Yet the consensus answer to the question Why aren't MD5 hash values reversible? is Because an infinite number of input strings will generate the same output. This seems completely contradictory to me.
Also, what perplexes me somewhat is the fact that the algorithms are public, yet the hash values are still irreversible. Is this because there is always data loss in a hash function so there's no way to tell which data was thrown away?
What happens when the input data size is smaller than the fixed output data size (e.g., hashing a password "abc")?
EDIT:
OK, let me see if I have this straight:
It is really, really hard to infer the input from the hash because there are an infinite amount of input strings that will generate the same output (irreversible property).
However, finding even a single instance of multiple input strings that generate the same output is also really, really hard (collision resistant property).
Warning: Long answer
I think all of these answers are missing a very important property of cryptographic hash functions: Not only is it impossible to compute the original message that was hashed to get a given hash, it's impossible to compute any message that would hash to a given hash value. This is called preimage resistance.
(By "impossible" - I mean that no one knows how to do it in less time than it takes to guess every possible message until you guess the one that was hashed into your hash.)
(Despite popular belief in the insecurity of MD5, MD5 is still preimage resistant. Anyone who doesn't believe me is free to give me anything that hashes to 2aaddf751bff2121cc51dc709e866f19. What MD5 doesn't have is collision resistance, which is something else entirely.)
Now, if the only reason you can't "work backwards" in a cryptographic hash function was because the hash function discards data to create the hash, then it would not guarantee preimage resistance: You can still "work backwards", and just insert random data wherever the hash function discards data, and while you wouldn't come up with the original message, you'd still come up with a message that hashes to the desired hash value. But you can't.
So the question becomes: Why not? (Or, in other words, how do you make a function preimage resistant?)
The answer is that cryptographic hash functions simulate chaotic systems. They take your message, break it into blocks, mix those blocks around, have some of the blocks interact with each other, mix those blocks around, and repeat that a lot of times (well, one cryptographic hash function does that; others have their own methods). Since the blocks interact with each other, block C not only has to interact with block D to produce block A, but it has to interact with block E to produce block B. Now, sure, you can find values of blocks C, D, E that would produce the blocks A and B in your hash value, but as you go further back, suddenly you need a block F that interacts with C to make D, and with E to make B, and no such block can do both at the same time! You must have guessed wrong values for C, D, and E.
While not all cryptographic hash functions are exactly as described above with block interaction, they have the same idea: That if you try to "work backwards", you're going to end up with a whole lot of dead ends, and the time it takes for you to try enough values to generate a preimage is on the order of hundreds to millions of years (depending on the hash function), not much better than the time it would take just to try messages until you find one that works.
1: The primary purpose of a hash is to map a very, very large space to a smaller but still very large space (e.g., MD5, which will take 'anything' and convert it into a space of size 2^128 -- big, but not nearly as big as aleph-0.)
In addition to other features, good hashes fill the destination space homogeneously. Bad hashes fill the space in a clumpy fashion, coming up with the same hash for many common inputs.
Imagine the idiotic hash function sum(), which just adds all the digits of the input number: it succeeds in mapping down, but there are a bunch of collisions (inputs with the same output, like 3 and 12 and 21) at the low end of the output space and the upper end of the space is nearly empty. As a result it makes very poor use of the space, is easy to crack, etc.
So a good hash that makes even use of the destination space will make it difficult to find two inputs with the same output, just by the odds: if MD5 were perfect, the odds that two inputs would have the same output would be 2^-128. That's pretty decent odds: the best you can do without resorting to a larger output space. (In truth MD5 isn't perfect, which is one of the things that makes it vulnerable.)
But it will still be true that a huge number of inputs will map to any given hash, because the input space is 'infinite', and dividing infinity by 2^128 still gives you infinity.
2: Yes, hashes always cause data loss, except in the case where your output space is the same as, or larger than, your input space -- and in that case you probably didn't need to hash!
3: For smaller inputs, best practice is to salt the input. Actually, that's good practice for any cryptographic hashing, because otherwise an attacker can feed you specific inputs and try to figure out which hash you are using. 'Salt' is just a set of additional information that you append (or prepend) to your input; you then hash the result.
edit: In cryptography, it is also important that the hash function is resistant to preimage attacks, intuitively, that is hard to guess the input for a given output even knowing many other input/output pairs. The "sum" function could probably be guessed rather easily (but since it destroys data still might not be easy to reverse).
You may be confused, because the answer to the question you cite is confusing.
One of the requirements for a cryptographic hash function is that it should be preimage resistant. That is, if you know MD5(x) but not the message x, then it is difficult to find any x' (either equal x or different from x) such that MD5(x') = MD5(x).
Being preimage resistant is a different property than being reversible. A function is reversible if given y = f(x) there is exactly one x which fits (whether this is easy or not). For example define f(x) = x mod 10.
Then f is not reversible. From f(x) = 7 you can't determine whether x was 17, 27 or something else. But f is not preimage resistant, since values x' such that f(x) = 7 are easy to find. x' = 17, 27, 12341237 etc all work.
When doing crypto you usually need functions that are preimage resistant (and other properties such as collision resistance), not just something that is not reversible.
These are the properties of hash functions in general.
A word of caution though, MD5 shouldn't be used anymore because of vulnerabilities that have been found in it. Check the 'Vulnerabilities' section and external links detailing these attacks. http://en.wikipedia.org/wiki/Md5 You can make an MD5 collision by changing only 128 bits in a message.
SHA-1 is safe for simple hashing although there are some attacks that would make it weaker against well-funded entities (Governments, large corporations)
SHA-256 is a safe starting point against technology for the next couple decades.
Yet the consensus answer to the question "why aren't MD5 hash values reversible?" is because "an infinite number of input strings will generate the same output."
This is true for any hash function, but it is not the essence of a cryptographic hash function.
For short input strings such as passwords it is theoretically possible to reverse a cryptographic hash function, but it ought to be computationally infeasible. I.e. your computation would run too long to be useful.
The reason for this infeasibility is that the input is so thoroughly "mixed together" in the hash value that it becomes impossible to disentangle it with any less effort than the brute force attack of computing the hash value for all inputs
"why aren't MD5 hash values reversible?" is because "an infinite number of input strings >will generate the same output"
this is the reason that it isn't possible to reverse the hash function (get the same input).
cryptographic hash functions are collision resistant, that means that it's also hard to find another input value that maps to the same output (if your hash function was mod 2 : 134 mod 2 = 0; now you can't get the 134 back from the result, but we can stil find number 2 with the same output value (134 and 2 collide)).
When the input is smaller than the block size, padding is used to fit it to the block size.
I am facing an application that uses hashing, but I cannot still figure out how it works. Here is my problem, hashing is used to generate some index, and with those indexes I access to different tables, and after I add the value of every table that I get using the indexes and with that I get my final value. This is done to reduce the memory requirements. The input to the hashing function is doing the XOR between a random constant number and some parameters from the application.
Is this a typical hashing application?. The thing that I do not understand is how using hashing can we reduce the memory requirements?. Can anyone clarify this?.
Thank you
Hashing alone doesn't have anything to do with memory.
What it is often used for is a hashtable. Hashtables work by computing the hash of what you are keying off of, which is then used as an index into a data structure.
Hashing allows you to reduce the key (string, etc.) into a more compact value like an integer or set of bits.
That might be the memory savings you're referring to--reducing a large key to a simple integer.
Note, though, that hashes are not unique! A good hashing algorithm minimizes collisions but they are not intended to reduce to a unique value--doing so isn't possible (e.g., if your hash outputs a 32bit integer, your hash would have only 2^32 unique values).
Is it a bloom filter you are talking about? This uses hash functions to get a space efficient way to test membership of a set. If so then see the link for an explanation.
Most good hash implementations are memory inefficient, otherwise there would be more computing involved - and that would exactly be missing the point of hashing.
Hash implementations are used for processing efficiency, as they'll provide you with constant running time for operations like insertion, removal and retrieval.
You can think about the quality of hashing in a way that all your data, no matter what type or size, is always represented in a single fixed-length form.
This could be explained if the hashing being done isn't to build a true hash table, but is to just create an index in a string/memory block table. If you had the same string (or memory sequence) 20 times in your data, and you then replaced all 20 instances of that string with just its hash/table index, you could achieve data compression in that way. If there's an actual collision chain contained in that table for each hash value, however, then what I just described is not what's going on; in that case, the reason for the hashing would most likely be to speed up execution (by providing quick access to stored values), rather than compression.