Given a system of the form y' = A*y(t) with solution y(t) = e^(tA)*y(0), where e^A is the matrix exponential (i.e. sum from n=0 to infinity of A^n/n!), how would I use matlab to compute the solution given the values of matrix A and the initial values for y?
That is, given A = [-2.1, 1.6; -3.1, 2.6], y(0) = [1;2], how would I solve for y(t) = [y1; y2] on t = [0:5] in matlab?
I try to use something like
t = 0:5
[y1; y2] = expm(A.*t).*[1;2]
and I'm finding errors in computing the multiplication due to dimensions not agreeing.
Please note that matrix exponential is defined for square matrices. Your attempt to multiply the attenuation coefs with the time vector doesn't give you what you'd want (which should be a 3D matrix that should be exponentiated slice by slice).
One of the simple ways would be this:
A = [-2.1, 1.6; -3.1, 2.6];
t = 0:5;
n = numel(t); %'number of samples'
y = NaN(2, n);
y(:,1) = [1;2];
for k =2:n
y(:,k) = expm(t(k)*A) * y(:,1);
end;
figure();
plot(t, y(1,:), t, y(2,:));
Please note that in MATLAB array are indexed from 1.
Related
I have written a script to compute and solve a simple inverted pendalum system.Now suppose that I want to solve the nonlinear dynamic equation of the system with ODE45 function with different values of initial conditions.How could I use a for loop to solve for state vector of X for different values of initial conditions?I wrote a for loop to do that but I could not get the answer I wanted.Help me please.Here are my function and mfile as follows:
function xDot = of(x,g,L,u)
xDot = zeros(2,1);
xDot(1) = x(2);
xDot(2) = ((g./L)*sin(x(1)))+u;
end
And this is my main code:
clc;
clear;close all;
%% Solve The Nonlinear Equation
L = 1;
g = 9.81;
h = 0.25;
t = [0:h:5];
A = [0 1;(g/L) 0];
B =[0 1]';
Ics = [pi,0;pi/2 0;pi/5 0;0.001 0;pi 0.5;pi/2 0.5;pi/5 0.5;0.001 0.5];
[Poles,~] = eig(A); %Poles Of Closed LOop System
R = 0.01;
Q = eye(2);
K = lqr(A,B,Q,R);
u = #(x)-K*(x);
for i=1:size(Ics,1)
[~,X] = ode45(#(t,x)of(x,g,L,u(x)),t,Ics(i,:));
end
Also note that I want the first column of X vector which is the angular displacements of the pendulum in each iteration because the second column of X vector in ODE45 is always the Derivative of the main state vector.
You can store all the integration outputs for the different initial conditions in a 3D array.
The number of rows of Xout will equal the number of time steps at which you want to evaluate your solution, so numel(t). The number of columns is the number of states, and then the third dimension will be the number of initial conditions you want to test.
Xout = zeros(numel(t), size(Ics, 2), size(Ics, 1)); % initialize the 3D array
for k = 1:size(Ics, 1)
[~, Xout(:, :, k)] = ode45(#(t, x)of(x, g, L, u(x)), t, Ics(k, :));
end
This is my code for finding the centered coefficients for lagrange polynomial interpolation:
% INPUT
% f f scalar - valued function
% interval interpolation interval [a, b]
% n interpolation order
%
% OUTPUT
% coeff centered coefficients of Lagrange interpolant
function coeff = lagrangeInterp (f, interval , n)
a = interval(1);
b = interval(2);
x = linspace(a,b,n+1);
y = f(x);
coeff(1,:) = polyfit(x,y,n);
end
Which is called in the following script
%Plot lagrangeInterp and sin(x) together
hold on
x = 0:0.1*pi:2*pi;
for n = 1:1:4
coeff = lagrangeInterp(#(x)sin(x),[0,2*pi],n);
plot(x,polyval(coeff,x,'-'));
end
y = sin(x);
plot(x,y);
legend('1st order','2nd order','3rd order','4th order','sin(x)');
To check for stability I would like to perturb the function (eg g(x) = f(x) + epsilon). How would I go about this?
Well, a little trick for you.
You know randn([m,n]) in matlab generate a m*n random matrix. The point is to generate a random vector, and interp1 to a function of x. Like this:
x = linspace(a,b,n+1); % Your range of input
g = #(ep,xx)f(xx)+interp1(x,ep*randn([length(x),1]),xx);
K is a large sparse matrix and y is a vector. At a particular timestep dt from t1 to t1+dt:
Method1:
The expm leads to:
K = ...
y = ...
y = expm(-1i*dt*K)*y; %new y
Method2:
The ode45 gives:
K = ...
y = ...
y0 = y;
[T, Y] = ode45(#(t,y)dy(y,K),[t1 t1+dt],y0);
y = Y(end,:).'; %new y
where:
function ydot = dy(y,K)
ydot = -1i*K*y;
The two method gives different result for large sparse matrix. Which is the correct one?
As I mentioned above, there is no way to 100% guarantee the correctness of ode solver results. But you can:
manually set the upper bound for integration step size;
try using a
stiff solver (ode15s,ode23t etc);
supply the Jacobian matrix or the
Jacobian pattern for dy(y,K) to improve the solver accuracy.
Here is an example of manually setting the maximum step size:
options= odeset('MaxStep',1e-3); % some experimentally obtained value here
[T, Y] = ode45(#(t,y)dy(y,K),[t1 t1+dt],y0,options);
Here is the description of Jacobian and Jpattern options. Note that you can't use them with ode45, you should use another solver
I need some help with finding solution to Cauchy problem in Matlab.
The problem:
y''+10xy = 0, y(0) = 7, y '(0) = 3
Also I need to plot the graph.
I wrote some code but, I'm not sure whether it's correct or not. Particularly in function section.
Can somebody check it? If it's not correct, where I made a mistake?
Here is separate function in other .m file:
function dydx = funpr12(x,y)
dydx = y(2)+10*x*y
end
Main:
%% Cauchy problem
clear all, clc
xint = [0,5]; % interval
y0 = [7;3]; % initial conditions
% numerical solution using ode45
sol = ode45(#funpr12,xint,y0);
xx = [0:0.01:5]; % vector of x values
y = deval(sol,xx); % vector of y values
plot(xx,y(1,:),'r', 'LineWidth',3)
legend('y1(x)')
xlabel('x')
ylabel('y(x)')
I get this graph:
ode45 and its related ilk are only designed to solve first-order differential equations which are of the form y' = .... You need to do a bit of work if you want to solve second-order differential questions.
Specifically, you'll have to represent your problem as a system of first-order differential equations. You currently have the following ODE:
y'' + 10xy = 0, y(0) = 7, y'(0) = 3
If we rearrange this to solve for y'', we get:
y'' = -10xy, y(0) = 7, y'(0) = 3
Next, you'll want to use two variables... call it y1 and y2, such that:
y1 = y
y2 = y'
The way you have built your code for ode45, the initial conditions that you specified are exactly this - the guess using y and its first-order guess y'.
Taking the derivative of each side gives:
y1' = y'
y2' = y''
Now, doing some final substitutions we get this final system of first-order differential equations:
y1' = y2
y2' = -10*x*y1
If you're having trouble seeing this, simply remember that y1 = y, y2 = y' and finally y2' = y'' = -10*x*y = -10*x*y1. Therefore, you now need to build your function so that it looks like this:
function dydx = funpr12(x,y)
y1 = y(2);
y2 = -10*x*y(1);
dydx = [y1 y2];
end
Remember that the vector y is a two element vector which represents the value of y and the value of y' respectively at each time point specified at x. I would also argue that making this an anonymous function is cleaner. It requires less code:
funpr12 = #(x,y) [y(2); -10*x*y(1)];
Now go ahead and solve it (using your code):
%%// Cauchy problem
clear all, clc
funpr12 = #(x,y) [y(2); -10*x*y(1)]; %// Change
xint = [0,5]; % interval
y0 = [7;3]; % initial conditions
% numerical solution using ode45
sol = ode45(funpr12,xint,y0); %// Change - already a handle
xx = [0:0.01:5]; % vector of x values
y = deval(sol,xx); % vector of y values
plot(xx,y(1,:),'r', 'LineWidth',3)
legend('y1(x)')
xlabel('x')
ylabel('y(x)')
Take note that the output when simulating the solution to the differential equation by deval will be a two column matrix. The first column is the solution to the system while the second column is the derivative of the solution. As such, you'll want to plot the first column, which is what the plot syntax is doing.
I get this plot now:
I'm trying to get Matlab to take this as a function of x_1 through x_n and y_1 through y_n, where k_i and r_i are all constants.
So far my idea was to take n from the user and make two 1×n vectors called x and y, and for the x_i just pull out x(i). But I don't know how to make an arbitrary sum in MATLAB.
I also need to get the gradient of this function, which I don't know how to do either. I was thinking maybe I could make a loop and add that to the function each time, but MATLAB doesn't like that.
I don't believe a loop is necessary for this calculation. MATLAB excels at vectorized operations, so would something like this work for you?
l = 10; % how large these vectors are
k = rand(l,1); % random junk values to work with
r = rand(l,1);
x = rand(l,1);
y = rand(l,1);
vals = k(1:end-1) .* (sqrt(diff(x).^2 + diff(y).^2) - r(1:end-1)).^2;
sum(vals)
EDIT: Thanks to #Amro for correcting the formula and simplifying it with diff.
You can solve for the gradient symbolically with:
n = 10;
k = sym('k',[1 n]); % Create n variables k1, k2, ..., kn
x = sym('x',[1 n]); % Create n variables x1, x2, ..., xn
y = sym('y',[1 n]); % Create n variables y1, y2, ..., yn
r = sym('r',[1 n]); % Create n variables r1, r2, ..., rn
% Symbolically sum equation
s = sum((k(1:end-1).*sqrt((x(2:end)-x(1:end-1)).^2+(y(2:end)-y(1:end-1)).^2)-r(1:end-1)).^2)
grad_x = gradient(s,x) % Gradient with respect to x vector
grad_y = gradient(s,y) % Gradient with respect to y vector
The symbolic sum and gradients can be evaluated and converted to floating point with:
% n random data values for k, x, y, and r
K = rand(1,n);
X = rand(1,n);
Y = rand(1,n);
R = rand(1,n);
% Substitute in data for symbolic variables
S = double(subs(s,{[k,x,y,r]},{[K,X,Y,R]}))
GRAD_X = double(subs(grad_x,{[k,x,y,r]},{[K,X,Y,R]}))
GRAD_Y = double(subs(grad_y,{[k,x,y,r]},{[K,X,Y,R]}))
The gradient function is the one overloaded for symbolic variables (type help sym/gradient) or see the more detailed documentation online).
Yes, you could indeed do this with a loop, considering that x, y, k, and r are already defined.
n = length(x);
s = 0;
for j = 2 : n
s = s + k(j-1) * (sqrt((x(j) - x(j-1)).^2 + (y(j) - y(j-1)).^2) - r(j-1)).^2
end
You should derive the gradient analytically and then plug in numbers. It should not be too hard to expand these terms and then find derivatives of the resulting polynomial.
Vectorized solution is something like (I wonder why do you use sqrt().^2):
is = 2:n;
result = sum( k(is - 1) .* abs((x(is) - x(is-1)).^2 + (y(is) - y(is-1)).^2 - r(is-1)));
You can either compute gradient symbolically or rewrite this code as a function and make a standard +-eps calculation. If you need a gradient to run optimization (you code looks like a fitness function) you could use algorithms that calculate them themselves, for example, fminsearch can do this