efficient algorithm to find minimum of multivariable function - matlab

I have a multivariable function that I wish to minimize. The function has two input arguments, a vector c and a scalar \theta.
Using fmincon in MATLAB to solve the optimization problem for both c and \theta is complicated because certain values of \theta causes numerical errors. However, fixing theta, c can be easily obtained via fmincon without any errors.
So the plan now is to do a brute force approach, i.e. compute c for each value of \theta in the range 1:100 (although the true constraint for \theta is \theta \ge 0) and choose \theta (and the corresponding c) for which the objective value is minimized simply by plugging the estimated parameters back to the objective function.
Now this doesn't sound very efficient to me and I'm wondering if I can employ a bisection method-esque approach so that I would not have to go over all possible values of \theta in the range specified above.
Thanks a lot!

You should be able to let fmincon do you work for you on both c and theta. If it has problems getting a decent result when theta is included, it is likely because the elements in c and theta are of very different scales. You should scale your equations so that all of the variables end up around a value of 1.0. This greatly improves the performance (ie, speed) and accuracy of nearly any numerical optimization code.
So, if you suspect that the final values of c might end up being [1.0 0.001 10.0] and you suspect that theta might end up as [10.0], you would formulate your problem as
>>>>>>>>>>>>>>>>>>>>> in your main program prior to invoking fmincon
c = [1.0 0.001 10.0]
theta = 10.0
foo_x = [c(:);thetha];
scale_fac = [1.0 1000.0 0.1 0.1];
x = foo_x .* scale_fac; %scale your seed values to be near 1.0
>>>>>>>>>>>>>> inside your function
function err = myfunction(x,scale_fac)
foo_x = x ./ scale_fac; %de-scale to get back to correct magnitude
c = foo_x(1:3);
theta = foo_x (4);
...rest of your code

Bisection search over theta will only work if the objective function is convex (or quasiconvex) in theta. Otherwise, you risk finding a local min instead of a global min.
Doing a nested fmincon, as #chipaudette suggests, should work if you choose a solver capable of solving nonconvex optimization problems. (The MATLAB help on this topic is a little vague, but I think the SQP solver should be OK.) But I suspect it will be more efficient just to enumerate over the relevant range of theta, rather than using fmincon for it.

Related

Normalization of integrand for numerical integration in Matlab

First off, I'm not sure if this is the best place to post this, but since there isn't a dedicated Matlab community I'm posting this here.
To give a little background, I'm currently prototyping a plasma physics simulation which involves triple integration. The innermost integral can be done analytically, but for the outer two this is just impossible. I always thought it's best to work with values close to unity and thus normalized the my innermost integral such that it is unit-less and usually takes values close to unity. However, compared to an earlier version of the code where the this innermost integral evaluated to values of the order of 1e-50, the numerical double integration, which uses the native Matlab function integral2 with target relative tolerance of 1e-6, now requires around 1000 times more function evaluations to converge. As a consequence my simulation now takes roughly 12h instead of the previous 20 minutes.
Question
So my questions are:
Is it possible that the faster convergence in the older version is simply due to the additional evaluations vanishing as roundoff errors and that the results thus arn't trustworthy even though it passes the 1e-6 relative tolerance? In the few tests I run the results seemed to be the same in both versions though.
What is the best practice concerning the normalization of the integrand for numerical integration?
Is there some way to improve the convergence of numerical integrals, especially if the integrand might have singularities?
I'm thankful for any help or insight, especially since I don't fully understand the inner workings of Matlab's integral2 function and what should be paid attention to when using it.
If I didn't know any better I would actually conclude, that the integrand which is of the order of 1e-50 works way better than one of say the order of 1e+0, but that doesn't seem to make sense. Is there some numerical reason why this could actually be the case?
TL;DR when multiplying the function to be integrated numerically by Matlab 's integral2 with a factor 1e-50 and then the result in turn with a factor 1e+50, the integral gives the same result but converges way faster and I don't understand why.
edit:
I prepared a short script to illustrate the problem. Here the relative difference between the two results was of the order of 1e-4 and thus below the actual relative tolerance of integral2. In my original problem however the difference was even smaller.
fun = #(x,y,l) l./(sqrt(1-x.*cos(y)).^5).*((1-x).*sin(y));
x = linspace(0,1,101);
y = linspace(0,pi,101).';
figure
surf(x,y,fun(x,y,1));
l = linspace(0,1,101); l=l(2:end);
v1 = zeros(1,100); v2 = v1;
tval = tic;
for i=1:100
fun1 = #(x,y) fun(x,y,l(i));
v1(i) = integral2(fun1,0,1,0,pi,'RelTol',1e-6);
end
t1 = toc(tval)
tval = tic;
for i=1:100
fun1 = #(x,y) 1e-50*fun(x,y,l(i));
v2(i) = 1e+50*integral2(fun1,0,1,0,pi,'RelTol',1e-6);
end
t2 = toc(tval)
figure
hold all;
plot(l,v1);
plot(l,v2);
plot(l,abs((v2-v1)./v1));

Optimizing huge amounts of calls of fsolve in Matlab

I'm solving a pair of non-linear equations for each voxel in a dataset of a ~billion voxels using fsolve() in MATLAB 2016b.
I have done all the 'easy' optimizations that I'm aware of. Memory localization is OK, I'm using parfor, the equations are in fairly numerically simple form. All discontinuities of the integral are fed to integral(). I'm using the Levenberg-Marquardt algorithm with good starting values and a suitable starting damping constant, it converges on average with 6 iterations.
I'm now at ~6ms per voxel, which is good, but not good enough. I'd need a order of magnitude reduction to make the technique viable. There's only a few things that I can think of improving before starting to hammer away at accuracy:
The splines in the equation are for quick sampling of complex equations. There are two for each equation, one is inside the 'complicated nonlinear equation'. They represent two equations, one which is has a large amount of terms but is smooth and has no discontinuities and one which approximates a histogram drawn from a spectrum. I'm using griddedInterpolant() as the editor suggested.
Is there a faster way to sample points from pre-calculated distributions?
parfor i=1:numel(I1)
sols = fsolve(#(x) equationPair(x, input1, input2, ...
6 static inputs, fsolve options)
output1(i) = sols(1); output2(i) = sols(2)
end
When calling fsolve, I'm using the 'parametrization' suggested by Mathworks to input the variables. I have a nagging feeling that defining a anonymous function for each voxel is taking a large slice of the time at this point. Is this true, is there a relatively large overhead for defining the anonymous function again and again? Do I have any way to vectorize the call to fsolve?
There are two input variables which keep changing, all of the other input variables stay static. I need to solve one equation pair for each input pair so I can't make it a huge system and solve it at once. Do I have any other options than fsolve for solving pairs of nonlinear equations?
If not, some of the static inputs are the fairly large. Is there a way to keep the inputs as persistent variables using MATLAB's persistent, would that improve performance? I only saw examples of how to load persistent variables, how could I make it so that they would be input only once and future function calls would be spared from the assumedly largish overhead of the large inputs?
EDIT:
The original equations in full form look like:
Where:
and:
Everything else is known, solving for x_1 and x_2. f_KN was approximated by a spline. S_low (E) and S_high(E) are splines, the histograms they are from look like:
So, there's a few things I thought of:
Lookup table
Because the integrals in your function do not depend on any of the parameters other than x, you could make a simple 2D-lookup table from them:
% assuming simple (square) range here, adjust as needed
[x1,x2] = meshgrid( linspace(0, xmax, N) );
LUT_high = zeros(size(x1));
LUT_low = zeros(size(x1));
for ii = 1:N
LUT_high(:,ii) = integral(#(E) Fhi(E, x1(1,ii), x2(:,ii)), ...
0, E_high, ...
'ArrayValued', true);
LUT_low(:,ii) = integral(#(E) Flo(E, x1(1,ii), x2(:,ii)), ...
0, E_low, ...
'ArrayValued', true);
end
where Fhi and Flo are helper functions to compute those integrals, vectorized with scalar x1 and vector x2 in this example. Set N as high as memory will allow.
Those lookup tables you then pass as parameters to equationPair() (which allows parfor to distribute the data). Then just use interp2 in equationPair():
F(1) = I_high - interp2(x1,x2,LUT_high, x(1), x(2));
F(2) = I_low - interp2(x1,x2,LUT_low , x(1), x(2));
So, instead of recomputing the whole integral every time, you evaluate it once for the expected range of x, and reuse the outcomes.
You can specify the interpolation method used, which is linear by default. Specify cubic if you're really concerned about accuracy.
Coarse/Fine
Should the lookup table method not be possible for some reason (memory limitations, in case the possible range of x is too big), here's another thing you could do: split up the whole procedure in 2 parts, which I'll call coarse and fine.
The intent of the coarse method is to improve your initial estimates really quickly, but perhaps not so accurately. The quickest way to approximate that integral by far is via the rectangle method:
do not approximate S with a spline, just use the original tabulated data (so S_high/low = [S_high/low#E0, S_high/low#E1, ..., S_high/low#E_high/low]
At the same values for E as used by the S data (E0, E1, ...), evaluate the exponential at x:
Elo = linspace(0, E_low, numel(S_low)).';
integrand_exp_low = exp(x(1)./Elo.^3 + x(2)*fKN(Elo));
Ehi = linspace(0, E_high, numel(S_high)).';
integrand_exp_high = exp(x(1)./Ehi.^3 + x(2)*fKN(Ehi));
then use the rectangle method:
F(1) = I_low - (S_low * Elo) * (Elo(2) - Elo(1));
F(2) = I_high - (S_high * Ehi) * (Ehi(2) - Ehi(1));
Running fsolve like this for all I_low and I_high will then have improved your initial estimates x0 probably to a point close to "actual" convergence.
Alternatively, instead of the rectangle method, you use trapz (trapezoidal method). A tad slower, but possibly a bit more accurate.
Note that if (Elo(2) - Elo(1)) == (Ehi(2) - Ehi(1)) (step sizes are equal), you can further reduce the number of computations. In that case, the first N_low elements of the two integrands are identical, so the values of the exponentials will only differ in the N_low + 1 : N_high elements. So then just compute integrand_exp_high, and set integrand_exp_low equal to the first N_low elements of integrand_exp_high.
The fine method then uses your original implementation (with the actual integral()s), but then starting at the updated initial estimates from the coarse step.
The whole objective here is to try and bring the total number of iterations needed down from about 6 to less than 2. Perhaps you'll even find that the trapz method already provides enough accuracy, rendering the whole fine step unnecessary.
Vectorization
The rectangle method in the coarse step outlined above is easy to vectorize:
% (uses R2016b implicit expansion rules)
Elo = linspace(0, E_low, numel(S_low));
integrand_exp_low = exp(x(:,1)./Elo.^3 + x(:,2).*fKN(Elo));
Ehi = linspace(0, E_high, numel(S_high));
integrand_exp_high = exp(x(:,1)./Ehi.^3 + x(:,2).*fKN(Ehi));
F = [I_high_vector - (S_high * integrand_exp_high) * (Ehi(2) - Ehi(1))
I_low_vector - (S_low * integrand_exp_low ) * (Elo(2) - Elo(1))];
trapz also works on matrices; it will integrate over each column in the matrix.
You'd call equationPair() then using x0 = [x01; x02; ...; x0N], and fsolve will then converge to [x1; x2; ...; xN], where N is the number of voxels, and each x0 is 1×2 ([x(1) x(2)]), so x0 is N×2.
parfor should be able to slice all of this fairly easily over all the workers in your pool.
Similarly, vectorization of the fine method should also be possible; just use the 'ArrayValued' option to integral() as shown above:
F = [I_high_vector - integral(#(E) S_high(E) .* exp(x(:,1)./E.^3 + x(:,2).*fKN(E)),...
0, E_high,...
'ArrayValued', true);
I_low_vector - integral(#(E) S_low(E) .* exp(x(:,1)./E.^3 + x(:,2).*fKN(E)),...
0, E_low,...
'ArrayValued', true);
];
Jacobian
Taking derivatives of your function is quite easy. Here is the derivative w.r.t. x_1, and here w.r.t. x_2. Your Jacobian will then have to be a 2×2 matrix
J = [dF(1)/dx(1) dF(1)/dx(2)
dF(2)/dx(1) dF(2)/dx(2)];
Don't forget the leading minus sign (F = I_hi/lo - g(x) → dF/dx = -dg/dx)
Using one or both of the methods outlined above, you can implement a function to compute the Jacobian matrix and pass this on to fsolve via the 'SpecifyObjectiveGradient' option (via optimoptions). The 'CheckGradients' option will come in handy there.
Because fsolve usually spends the vast majority of its time computing the Jacobian via finite differences, manually computing a value for it manually will normally speed the algorithm up tremendously.
It will be faster, because
fsolve doesn't have to do extra function evaluations to do the finite differences
the convergence rate will increase due to the improved precision of the Jacobian
Especially if you use the rectangle method or trapz like above, you can reuse many of the computations you've already done for the function values themselves, meaning, even more speed-up.
Rody's answer was the correct one. Supplying the Jacobian was the single largest factor. Especially with the vectorized version, there were 3 orders of magnitude of difference in speed with the Jacobian supplied and not.
I had trouble finding information about this subject online so I'll spell it out here for future reference: It is possible to vectorize independant parallel equations with fsolve() with great gains.
I also did some work with inlining fsolve(). After supplying the Jacobian and being smarter about the equations, the serial version of my code was mostly overhead at ~1*10^-3 s per voxel. At that point most of the time inside the function was spent passing around a options -struct and creating error-messages which are never sent + lots of unused stuff assumedly for the other optimization functions inside the optimisation function (levenberg-marquardt for me). I succesfully butchered the function fsolve and some of the functions it calls, dropping the time to ~1*10^-4s per voxel on my machine. So if you are stuck with a serial implementation e.g. because of having to rely on the previous results it's quite possible to inline fsolve() with good results.
The vectorized version provided the best results in my case, with ~5*10^-5 s per voxel.

Obtaining the constant that makes the integral equal to zero in Matlab

I'm trying to code a MATLAB program and I have arrived at a point where I need to do the following. I have this equation:
I must find the value of the constant "Xcp" (greater than zero), that is the value that makes the integral equal to zero.
In order to do so, I have coded a loop in which the the value of Xcp advances with small increments on each iteration and the integral is performed and checked if it's zero, if it reaches zero the loop finishes and the Xcp is stored with this value.
However, I think this is not an efficient way to do this task. The running time increases a lot, because this loop is long and has the to perform the integral and the integration limits substitution every time.
Is there a smarter way to do this in Matlab to obtain a better code efficiency?
P.S.: I have used conv() to multiply both polynomials. Since cl(x) and (x-Xcp) are both polynomials.
EDIT: Piece of code.
p = [1 -Xcp]; % polynomial (x-Xcp)
Xcp=0.001;
i=1;
found=false;
while(i<=x_te && found~=true) % Xcp is upper bounded by x_te
int_cl_p = polyint(conv(cl,p));
Cm_cp=(-1/c^2)*diff(polyval(int_cl_p,[x_le,x_te]));
if(Cm_cp==0)
found=true;
else
Xcp=Xcp+0.001;
end
end
This is the code I used to run this section. Another problem is that I have to do it for different cases (different cl functions), for this reason the code is even more slow.
As far as I understood, you need to solve the equation for X_CP.
I suggest using symbolic solver for this. This is not the most efficient way for large polynomials, but for polynomials of degree 20 it takes less than 1 second. I do not claim that this solution is fastest, but this provides generic solution to the problem. If your polynomial does not change every iteration, then you can use this generic solution many times and not spend time for calculating integral.
So, generic symbolic solution in terms of xLE and xTE is obtained using this:
syms xLE xTE c x xCP
a = 1:20;
%//arbitrary polynomial of degree 20
cl = sum(x.^a.*randi([-100,100],1,20));
tic
eqn = -1/c^2 * int(cl * (x-xCP), x, xLE, xTE) == 0;
xCP = solve(eqn,xCP);
pretty(xCP)
toc
Elapsed time is 0.550371 seconds.
You can further use matlabFunction for finding the numerical solutions:
xCP_numerical = matlabFunction(xCP);
%// we then just plug xLE = 10 and xTE = 20 values into function
answer = xCP_numerical(10,20)
answer =
19.8038
The slight modification of the code can allow you to use this for generic coefficients.
Hope that helps
If you multiply by -1/c^2, then you can rearrange as
and integrate however you fancy. Since c_l is a polynomial order N, if it's defined in MATLAB using the usual notation for polyval, where coefficients are stored in a vector a such that
then integration is straightforward:
MATLAB code might look something like this
int_cl_p = polyint(cl);
int_cl_x_p = polyint([cl 0]);
X_CP = diff(polyval(int_cl_x_p,[x_le,x_te]))/diff(polyval(int_cl_p,[x_le,x_te]));

matlab differential equation

I have the following differential equation which I'm not able to solve.
We know the following about the equation:
D(r) is a third grade polynom
D'(1)=D'(2)=0
D(2)=2D(1)
u(1)=450
u'(2)=-K * (u(2)-Te)
Where K and Te are constants.
I want to approximate the problem using a matrix and I managed to solve
the similiar equation: with the same limit conditions for u(1) and u'(2).
On this equation I approximated u' and u'' with central differences and used a finite difference method between r=1 to r=2. I then placed the results in a matrix A in matlab and the limit conditions in the vector Y in matlab and ran u=A\Y to get how the u value changes. Heres my matlab code for the equation I managed to solve:
clear
a=1;
b=2;
N=100;
h = (b-a)/N;
K=3.20;
Ti=450;
Te=20;
A = zeros(N+2);
A(1,1)=1;
A(end,end)=1/(2*h*K);
A(end,end-1)=1;
A(end,end-2)=-1/(2*h*K);
r=a+h:h:b;
%y(i)
for i=1:1:length(r)
yi(i)=-r(i)*(2/(h^2));
end
A(2:end-1,2:end-1)=A(2:end-1,2:end-1)+diag(yi);
%y(i-1)
for i=1:1:length(r)-1
ymin(i)=r(i+1)*(1/(h^2))-1/(2*h);
end
A(3:end-1,2:end-2) = A(3:end-1,2:end-2)+diag(ymin);
%y(i+1)
for i=1:1:length(r)
ymax(i)=r(i)*(1/(h^2))+1/(2*h);
end
A(2:end-1,3:end)=A(2:end-1,3:end)+diag(ymax);
Y=zeros(N+2,1);
Y(1) =Ti;
Y(2)=-(Ti*(r(1)/(h^2)-(1/(2*h))));
Y(end) = Te;
r=[1,r];
u=A\Y;
plot(r,u(1:end-1));
My question is, how do I solve the first differential equation?
As TroyHaskin pointed out in comments, one can determine D up to a constant factor, and that constant factor cancels out in D'/D anyway. Put another way: we can assume that D(1)=1 (a convenient number), since D can be multiplied by any constant. Now it's easy to find the coefficients (done with Wolfram Alpha), and the polynomial turns out to be
D(r) = -2r^3+9r^2-12r+6
with derivative D'(r) = -6r^2+18r-12. (There is also a smarter way to find the polynomial by starting with D', which is quadratic with known roots.)
I would probably use this information right away, computing the coefficient k of the first derivative:
r = a+h:h:b;
k = 1+r.*(-6*r.^2+18*r-12)./(-2*r.^3+9*r.^2-12*r+6);
It seems that k is always positive on the interval [1,2], so if you want to minimize the changes to existing code, just replace r(i) by r(i)/k(i) in it.
By the way, instead of loops like
for i=1:1:length(r)
yi(i)=-r(i)*(2/(h^2));
end
one usually does simply
yi=-r*(2/(h^2));
This vectorization makes the code more compact and can benefit the performance too (not so much in your example, where solving the linear system is the bottleneck). Another benefit is that yi is properly initialized, while with your loop construction, if yi happened to already exist and have length greater than length(r), the resulting array would have extraneous entries. (This is a potential source of hard-to-track bugs.)

MATLAB complicated integration

I have an integration function which does not have indefinite integral expression.
Specifically, the function is f(y)=h(y)+integral(#(x) exp(-x-1/x),0,y) where h(y) is a simple function.
Matlab numerically computes f(y) well, but I want to compute the following function.
g(w)=w*integral(1-f(y).^(1/w),0,inf) where w is a real number in [0,1].
The problem for computing g(w) is handling f(y).^(1/w) numerically.
How can I calculate g(w) with MATLAB? Is it impossible?
Expressions containing e^(-1/x) are generally difficult to compute near x = 0. Actually, I am surprised that Matlab computes f(y) well in the first place. I'd suggest trying to compute g(w)=w*integral(1-f(y).^(1/w),epsilon,inf) for epsilon greater than zero, then gradually decreasing epsilon toward 0 to check if you can get numerical convergence at all. Convergence is certainly not guaranteed!
You can calculate g(w) using the functions you have, but you need to add the (ArrayValued,true) name-value pair.
The option allows you to specify a vector-valued w and allows the nested integral call to receive a vector of y values, which is how integral naturally works.
f = #(y) h(y)+integral(#(x) exp(-x-1/x),0,y,'ArrayValued',true);
g = #(w) w .* integral(1-f(y).^(1./w),0,Inf,'ArrayValued',true);
At least, that works on my R2014b installation.
Note: While h(y) may be simple, if it's integral over the positive real line does not converge, g(w) will more than likely not converge (I don't think I need to qualify that, but I'll hedge my bets).