Scala Future with Option() - scala

I'm creating three actor tasks using future, and then trying to collect all three when finished.
The current code is the following:
implicit val timeout = Timeout(5.seconds)
val result1 = actor1 ? DataForActor(data)
val result2 = actor2 ? DataForActor(data)
val result3 = actor3 ? DataForActor(data)
val answer = for {
a <- result1.mapTo[List[ResultData]]
b <- result2.mapTo[List[ResultData]]
c <- result3.mapTo[List[ResultData]]
} yield (a ++ b ++ c).sorted
answer onComplete {
case Success(resultData) =>
log.debug("All actors completed succesffully")
successActor ! SuccessData(resultData.take(2))
case Failure(resultData) =>
log.info("actors failed")
}
Each of the actors (actor1, actor2, actor3) manipulates the data and returns either None or Option(List(resultData)), as shown in the following code:
val resultData = if(data.size == 0) None else {
data.map {
...
try {
... //manipulation on resultData
Option(resultData)
}
catch {
case e: Exception => None
}
}.flatten
}
The for statement concatenates lists from each actor, and produces a long List(resultData).
I want that in the case that one actor returns None, it's result in the for statement will not add anything to the concatenation, i.e. List().
An example:
If I get:
result1 = List(1, 2, 3),
result2 = None,
result3 = List(4, 5),
I want:
resultData = List(1, 2, 3, 4, 5)

You could replace None with Nil before mapTo this way:
result1.map{
case None => Nil
case x => x
}.mapTo[List[ResultData]]
Note that you should avoid mapTo with generic type like List:
Future("x" :: Nil).mapTo[List[Int]]
// res0: scala.concurrent.Future[List[Int]]
Future("x" :: Nil).mapTo[List[Int]] foreach { _.map( _ + 1 ) }
// java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Integer
Because of type erasure mapTo can't prove that you have list of Int, not List of some other type. You'll get the same problem with case l: List[Int] in receive method of actor.
You should create special class for your messages like this:
sealed trait ResultList { def data: List[ResultData] }
case class NotEmptyResult(data: List[ResultData]) extends ResultList
case object EmptyResult extends ResultList { def data: List[ResultData] = Nil }
result1.mapTo[ResultList]

Related

Log warnings in pattern match without returning Any

I have an iterable of arrays that I am trying to turn into case classes, and I'm mapping over them to do so. In the event of an array being non-convertable to a case class, I want to log a warning and proceed with the mapping. However, when I implement the warning, the return type changes from Iterable[MyCaseClass] to Iterable[Any] which is not what I want. E.g.:
case class MyCaseClass(s1: String, s2: String)
object MyCaseClass {
def apply(sa: Array[String]) = new MyCaseClass(sa(0), sa(1))
}
val arrayIterable: Iterable[Array[String]] = Iterable(Array("a", "b"), Array("a", "b", "c"))
def badReturnType(): Iterable[Any] = { // Iterable[Any] is undesireable
arrayIterable map {
case sa: Array[String] if sa.length == 2 => MyCaseClass(sa)
case _ => println("something bad happened!") // but warnings are good
}
}
def desiredReturnType(): Iterable[MyCaseClass] = { // Iterable[MyCaseClass] is desireable
arrayIterable map {
case sa: Array[String] if sa.length == 2 => MyCaseClass(sa)
// but no warnings if things go wrong!
}
}
I want to write a function that meets the following criteria:
maps over the Iterable, converting each element to a MyCaseClass
log warnings when I get an array that cant be converted to a MyCaseClass
after logging the warning, the array passed into the match criteria is ignored/discarded
the return type should be Iterable[MyCaseClass].
How can I meet these conditions?
Consider using List instead of Array, and try wrapping in Option in combination with flatMap
l flatMap {
case e if e.length == 2 => Some(MyCaseClass(e))
case e => println(s"$e is wrong length"); None
}
Another approach is partitionMap
val (lefts, rights) = l.partitionMap {
case e if e.size == 2 => Right(MyCaseClass(e))
case e => Left(s"$e is wrong length")
}
lefts.foreach(println)
rights
You can do something like this:
final case class MyCaseClass(s1: String, s2: String)
def parse(input: Array[String]): Either[String, MyCaseClass] = input match {
case Array(s1, s2) => Right(MyCaseClass(s1, s2))
case _ => Left(s"Bad input: ${input.mkString("[", ", ", "]")}")
}
def logErrors(validated: Either[String, _]): Unit = validated match {
case Left(error) => println(error)
case Right(_) => ()
}
def validateData(data: IterableOnce[Array[String]]): List[MyCaseClass] =
data
.iterator
.map(parse)
.tapEach(logErrors)
.collect {
case Right(value) => value
}.toList
Which you can use like this:
val arrayIterable = Iterable(Array("a", "b"), Array("a", "b", "c"))
validateData(arrayIterable)
// Bad input: [a, b, c]
// res14: List[MyCaseClass] = List(MyCaseClass("a", "b"))

Scala `map` but exit early on `Failure`

If I have a Seq, I can map over it.
val ss = Seq("1", "2", "3")
println(ss.map(s => s.toInt)) // List(1, 2, 3)
But sometimes, the function that you pass to map can fail.
val ss = Seq("1", "2", "c")
println(ss.map(s => try { Success(s.toInt) } catch { case e: Throwable => Failure(e) })) // List(Success(1), Success(2), Failure(java.lang.NumberFormatException: For input string: "c"))
This last one will return a Seq[Try[Int]]. What I really want though is a Try[Seq[Int]], where if any one of the mapping is a Failure, it stops the iteration and returns the Failure instead. If there is no error, I want it to just return all the converted elements, unpacked from the Try.
What is the idiomatic Scala way to do this?
You may be overthinking this. The anonymous function in your map is essentially the same as Try.apply. If you want to end up with Try[Seq[Int]] then you can wrap the Seq in Try.apply and map within:
scala> val ss = Try(Seq("1", "2", "c").map(_.toInt))
ss: scala.util.Try[Seq[Int]] = Failure(java.lang.NumberFormatException: For input string: "c")
If any of the toInts fails, it will throw an exception and stop executing, and become a Failure.
Not sure it's idiomatic, but I would do something like this:
import util.{Try, Success, Failure}
import collection.mutable.ListBuffer
def toInt(s: String) =
// Correct usage would be Try(s.toInt)
try {
Success(s.toInt)
}
catch {
case e: Throwable => Failure(e)
}
def convert[A](ss: Seq[String], f: String => Try[A]) = {
ss.foldLeft(Try(ListBuffer[A]())) {
case (a, s) =>
for {
xs <- a
x <- f(s)
}
yield xs :+ x
}.map(_.toSeq)
}
scala> convert(List("1", "2"), toInt)
scala.util.Try[Seq[Int]] = Success(List(1, 2))
scala> convert(List("1", "c"), toInt)
scala.util.Try[Seq[Int]] = Failure(java.lang.NumberFormatException: For input string: "c")
If you really want to exit early instead of skipping elements you can use good old recursion:
def convert[A](ss: Seq[String], f: String => Try[A]) = {
#annotation.tailrec
def loop(ss: Seq[String], acc: ListBuffer[A]): Try[Seq[A]] = {
ss match {
case h::t =>
f(h) match {
case Success(x) => loop(t, acc :+ x)
case Failure(e) => Failure(e)
}
case Nil =>
Success(acc.toSeq)
}
}
loop(ss, ListBuffer[A]())
}

How to wait for several Futures?

Suppose I have several futures and need to wait until either any of them fails or all of them succeed.
For example: Let there are 3 futures: f1, f2, f3.
If f1 succeeds and f2 fails I do not wait for f3 (and return failure to the client).
If f2 fails while f1 and f3 are still running I do not wait for them (and return failure)
If f1 succeeds and then f2 succeeds I continue waiting for f3.
How would you implement it?
You could use a for-comprehension as follows instead:
val fut1 = Future{...}
val fut2 = Future{...}
val fut3 = Future{...}
val aggFut = for{
f1Result <- fut1
f2Result <- fut2
f3Result <- fut3
} yield (f1Result, f2Result, f3Result)
In this example, futures 1, 2 and 3 are kicked off in parallel. Then, in the for comprehension, we wait until the results 1 and then 2 and then 3 are available. If either 1 or 2 fails, we will not wait for 3 anymore. If all 3 succeed, then the aggFut val will hold a tuple with 3 slots, corresponding to the results of the 3 futures.
Now if you need the behavior where you want to stop waiting if say fut2 fails first, things get a little trickier. In the above example, you would have to wait for fut1 to complete before realizing fut2 failed. To solve that, you could try something like this:
val fut1 = Future{Thread.sleep(3000);1}
val fut2 = Promise.failed(new RuntimeException("boo")).future
val fut3 = Future{Thread.sleep(1000);3}
def processFutures(futures:Map[Int,Future[Int]], values:List[Any], prom:Promise[List[Any]]):Future[List[Any]] = {
val fut = if (futures.size == 1) futures.head._2
else Future.firstCompletedOf(futures.values)
fut onComplete{
case Success(value) if (futures.size == 1)=>
prom.success(value :: values)
case Success(value) =>
processFutures(futures - value, value :: values, prom)
case Failure(ex) => prom.failure(ex)
}
prom.future
}
val aggFut = processFutures(Map(1 -> fut1, 2 -> fut2, 3 -> fut3), List(), Promise[List[Any]]())
aggFut onComplete{
case value => println(value)
}
Now this works correctly, but the issue comes from knowing which Future to remove from the Map when one has been successfully completed. As long as you have some way to properly correlate a result with the Future that spawned that result, then something like this works. It just recursively keeps removing completed Futures from the Map and then calling Future.firstCompletedOf on the remaining Futures until there are none left, collecting the results along the way. It's not pretty, but if you really need the behavior you are talking about, then this, or something similar could work.
You can use a promise, and send to it either the first failure, or the final completed aggregated success:
def sequenceOrBailOut[A, M[_] <: TraversableOnce[_]](in: M[Future[A]] with TraversableOnce[Future[A]])(implicit cbf: CanBuildFrom[M[Future[A]], A, M[A]], executor: ExecutionContext): Future[M[A]] = {
val p = Promise[M[A]]()
// the first Future to fail completes the promise
in.foreach(_.onFailure{case i => p.tryFailure(i)})
// if the whole sequence succeeds (i.e. no failures)
// then the promise is completed with the aggregated success
Future.sequence(in).foreach(p trySuccess _)
p.future
}
Then you can Await on that resulting Future if you want to block, or just map it into something else.
The difference with for comprehension is that here you get the error of the first to fail, whereas with for comprehension you get the first error in traversal order of the input collection (even if another one failed first). For example:
val f1 = Future { Thread.sleep(1000) ; 5 / 0 }
val f2 = Future { 5 }
val f3 = Future { None.get }
Future.sequence(List(f1,f2,f3)).onFailure{case i => println(i)}
// this waits one second, then prints "java.lang.ArithmeticException: / by zero"
// the first to fail in traversal order
And:
val f1 = Future { Thread.sleep(1000) ; 5 / 0 }
val f2 = Future { 5 }
val f3 = Future { None.get }
sequenceOrBailOut(List(f1,f2,f3)).onFailure{case i => println(i)}
// this immediately prints "java.util.NoSuchElementException: None.get"
// the 'actual' first to fail (usually...)
// and it returns early (it does not wait 1 sec)
Here is a solution without using actors.
import scala.util._
import scala.concurrent._
import java.util.concurrent.atomic.AtomicInteger
// Nondeterministic.
// If any failure, return it immediately, else return the final success.
def allSucceed[T](fs: Future[T]*): Future[T] = {
val remaining = new AtomicInteger(fs.length)
val p = promise[T]
fs foreach {
_ onComplete {
case s # Success(_) => {
if (remaining.decrementAndGet() == 0) {
// Arbitrarily return the final success
p tryComplete s
}
}
case f # Failure(_) => {
p tryComplete f
}
}
}
p.future
}
You can do this with futures alone. Here's one implementation. Note that it won't terminate execution early! In that case you need to do something more sophisticated (and probably implement the interruption yourself). But if you just don't want to keep waiting for something that isn't going to work, the key is to keep waiting for the first thing to finish, and stop when either nothing is left or you hit an exception:
import scala.annotation.tailrec
import scala.util.{Try, Success, Failure}
import scala.concurrent._
import scala.concurrent.duration.Duration
import ExecutionContext.Implicits.global
#tailrec def awaitSuccess[A](fs: Seq[Future[A]], done: Seq[A] = Seq()):
Either[Throwable, Seq[A]] = {
val first = Future.firstCompletedOf(fs)
Await.ready(first, Duration.Inf).value match {
case None => awaitSuccess(fs, done) // Shouldn't happen!
case Some(Failure(e)) => Left(e)
case Some(Success(_)) =>
val (complete, running) = fs.partition(_.isCompleted)
val answers = complete.flatMap(_.value)
answers.find(_.isFailure) match {
case Some(Failure(e)) => Left(e)
case _ =>
if (running.length > 0) awaitSuccess(running, answers.map(_.get) ++: done)
else Right( answers.map(_.get) ++: done )
}
}
}
Here's an example of it in action when everything works okay:
scala> awaitSuccess(Seq(Future{ println("Hi!") },
Future{ Thread.sleep(1000); println("Fancy meeting you here!") },
Future{ Thread.sleep(2000); println("Bye!") }
))
Hi!
Fancy meeting you here!
Bye!
res1: Either[Throwable,Seq[Unit]] = Right(List((), (), ()))
But when something goes wrong:
scala> awaitSuccess(Seq(Future{ println("Hi!") },
Future{ Thread.sleep(1000); throw new Exception("boo"); () },
Future{ Thread.sleep(2000); println("Bye!") }
))
Hi!
res2: Either[Throwable,Seq[Unit]] = Left(java.lang.Exception: boo)
scala> Bye!
For this purpose I would use an Akka actor. Unlike the for-comprehension, it fails as soon as any of the futures fail, so it's a bit more efficient in that sense.
class ResultCombiner(futs: Future[_]*) extends Actor {
var origSender: ActorRef = null
var futsRemaining: Set[Future[_]] = futs.toSet
override def receive = {
case () =>
origSender = sender
for(f <- futs)
f.onComplete(result => self ! if(result.isSuccess) f else false)
case false =>
origSender ! SomethingFailed
case f: Future[_] =>
futsRemaining -= f
if(futsRemaining.isEmpty) origSender ! EverythingSucceeded
}
}
sealed trait Result
case object SomethingFailed extends Result
case object EverythingSucceeded extends Result
Then, create the actor, send a message to it (so that it will know where to send its reply to) and wait for a reply.
val actor = actorSystem.actorOf(Props(new ResultCombiner(f1, f2, f3)))
try {
val f4: Future[Result] = actor ? ()
implicit val timeout = new Timeout(30 seconds) // or whatever
Await.result(f4, timeout.duration).asInstanceOf[Result] match {
case SomethingFailed => println("Oh noes!")
case EverythingSucceeded => println("It all worked!")
}
} finally {
// Avoid memory leaks: destroy the actor
actor ! PoisonPill
}
This question has been answered but I am posting my value class solution (value classes were added in 2.10) since there isn't one here. Please feel free to criticize.
implicit class Sugar_PimpMyFuture[T](val self: Future[T]) extends AnyVal {
def concurrently = ConcurrentFuture(self)
}
case class ConcurrentFuture[A](future: Future[A]) extends AnyVal {
def map[B](f: Future[A] => Future[B]) : ConcurrentFuture[B] = ConcurrentFuture(f(future))
def flatMap[B](f: Future[A] => ConcurrentFuture[B]) : ConcurrentFuture[B] = concurrentFutureFlatMap(this, f) // work around no nested class in value class
}
def concurrentFutureFlatMap[A,B](outer: ConcurrentFuture[A], f: Future[A] => ConcurrentFuture[B]) : ConcurrentFuture[B] = {
val p = Promise[B]()
val inner = f(outer.future)
inner.future onFailure { case t => p.tryFailure(t) }
outer.future onFailure { case t => p.tryFailure(t) }
inner.future onSuccess { case b => p.trySuccess(b) }
ConcurrentFuture(p.future)
}
ConcurrentFuture is a no overhead Future wrapper that changes the default Future map/flatMap from do-this-then-that to combine-all-and-fail-if-any-fail. Usage:
def func1 : Future[Int] = Future { println("f1!");throw new RuntimeException; 1 }
def func2 : Future[String] = Future { Thread.sleep(2000);println("f2!");"f2" }
def func3 : Future[Double] = Future { Thread.sleep(2000);println("f3!");42.0 }
val f : Future[(Int,String,Double)] = {
for {
f1 <- func1.concurrently
f2 <- func2.concurrently
f3 <- func3.concurrently
} yield for {
v1 <- f1
v2 <- f2
v3 <- f3
} yield (v1,v2,v3)
}.future
f.onFailure { case t => println("future failed $t") }
In the example above, f1,f2 and f3 will run concurrently and if any fail in any order the future of the tuple will fail immediately.
You might want to checkout Twitter's Future API. Notably the Future.collect method. It does exactly what you want: https://twitter.github.io/scala_school/finagle.html
The source code Future.scala is available here:
https://github.com/twitter/util/blob/master/util-core/src/main/scala/com/twitter/util/Future.scala
You can use this:
val l = List(1, 6, 8)
val f = l.map{
i => future {
println("future " +i)
Thread.sleep(i* 1000)
if (i == 12)
throw new Exception("6 is not legal.")
i
}
}
val f1 = Future.sequence(f)
f1 onSuccess{
case l => {
logInfo("onSuccess")
l.foreach(i => {
logInfo("h : " + i)
})
}
}
f1 onFailure{
case l => {
logInfo("onFailure")
}

Sequentially combine arbitrary number of futures in Scala

I'm new to scala and I try to combine several Futures in scala 2.10RC3. The Futures should be executed in sequential order. In the document Scala SIP14 the method andThen is defined in order to execute Futures in sequential order. I used this method to combine several Futures (see example below). My expectation was that it prints 6 but actually the result is 0. What am I doing wrong here? I have two questions:
First, why is the result 0. Second, how can I combine several Futures, so that the execution of the second Future does not start before the first Future has been finished.
val intList = List(1, 2, 3)
val sumOfIntFuture = intList.foldLeft(Future { 0 }) {
case (future, i) => future andThen {
case Success(result) => result + i
case Failure(e) => println(e)
}
}
sumOfIntFuture onSuccess { case x => println(x) }
andThen is for side-effects. It allows you to specify some actions to do after future is completed and before it used for something else.
Use map:
scala> List(1, 2, 3).foldLeft(Future { 0 }) {
| case (future, i) => future map { _ + i }
| } onSuccess { case x => println(x) }
6
I like this generic approach:
trait FutureImplicits {
class SeriallyPimp[T, V](futures: Seq[T]) {
def serially(f: T => Future[V])(implicit ec: ExecutionContext): Future[Seq[V]] = {
val buf = ListBuffer.empty[V]
buf.sizeHint(futures.size)
futures.foldLeft(Future.successful(buf)) { (previousFuture, next) =>
for {
previousResults <- previousFuture
nextResult <- f(next)
} yield previousResults += nextResult
}
}
}
implicit def toSeriallyPimp[T, V](xs: Seq[T]): SeriallyPimp[T, V] =
new SeriallyPimp(xs)
}
Then mix-in the above trait and use it like this:
val elems: Seq[Elem] = ???
val save: Elem => Future[Result] = ???
val f: Future[Seq[Result]] = elems serially save
This code could be improved to preserve the input collection type. See this article for example.

MatchError when match receives an IndexedSeq but not a LinearSeq

Is there a reason that match written against Seq would work differently on IndexedSeq types than the way it does on LinearSeq types? To me it seems like the code below should do the exact same thing regardless of the input types. Of course it doesn't or I wouldn't be asking.
import collection.immutable.LinearSeq
object vectorMatch {
def main(args: Array[String]) {
doIt(Seq(1,2,3,4,7), Seq(1,4,6,9))
doIt(List(1,2,3,4,7), List(1,4,6,9))
doIt(LinearSeq(1,2,3,4,7), LinearSeq(1,4,6,9))
doIt(IndexedSeq(1,2,3,4,7), IndexedSeq(1,4,6,9))
doIt(Vector(1,2,3,4,7), Vector(1,4,6,9))
}
def doIt(a: Seq[Long], b: Seq[Long]) {
try {
println("OK! " + m(a, b))
}
catch {
case ex: Exception => println("m(%s, %s) failed with %s".format(a, b, ex))
}
}
#annotation.tailrec
def m(a: Seq[Long], b: Seq[Long]): Seq[Long] = {
a match {
case Nil => b
case firstA :: moreA => b match {
case Nil => a
case firstB :: moreB if (firstB < firstA) => m(moreA, b)
case firstB :: moreB if (firstB > firstA) => m(a, moreB)
case firstB :: moreB if (firstB == firstA) => m(moreA, moreB)
case _ => throw new Exception("Got here: a: " + a + " b: " + b)
}
}
}
}
Running this on 2.9.1 final, I get the following output:
OK! List(2, 3, 4, 7)
OK! List(2, 3, 4, 7)
OK! List(2, 3, 4, 7)
m(Vector(1, 2, 3, 4, 7), Vector(1, 4, 6, 9)) failed with scala.MatchError: Vector(1, 2, 3, 4, 7) (of class scala.collection.immutable.Vector)
m(Vector(1, 2, 3, 4, 7), Vector(1, 4, 6, 9)) failed with scala.MatchError: Vector(1, 2, 3, 4, 7) (of class scala.collection.immutable.Vector)
It runs fine for List-y things, but fails for Vector-y things. Am I missing something? Is this a compiler bug?
The scalac -print output for m looks like:
#scala.annotation.tailrec def m(a: Seq, b: Seq): Seq = {
<synthetic> val _$this: object vectorMatch = vectorMatch.this;
_m(_$this,a,b){
<synthetic> val temp6: Seq = a;
if (immutable.this.Nil.==(temp6))
{
b
}
else
if (temp6.$isInstanceOf[scala.collection.immutable.::]())
{
<synthetic> val temp8: scala.collection.immutable.:: = temp6.$asInstanceOf[scala.collection.immutable.::]();
<synthetic> val temp9: Long = scala.Long.unbox(temp8.hd$1());
<synthetic> val temp10: List = temp8.tl$1();
val firstA$1: Long = temp9;
val moreA: List = temp10;
{
<synthetic> val temp1: Seq = b;
if (immutable.this.Nil.==(temp1))
{
a
}
else
if (temp1.$isInstanceOf[scala.collection.immutable.::]())
{
<synthetic> val temp3: scala.collection.immutable.:: = temp1.$asInstanceOf[scala.collection.immutable.::]();
<synthetic> val temp4: Long = scala.Long.unbox(temp3.hd$1());
<synthetic> val temp5: List = temp3.tl$1();
val firstB: Long = temp4;
if (vectorMatch.this.gd1$1(firstB, firstA$1))
body%11(firstB){
_m(vectorMatch.this, moreA, b)
}
else
{
val firstB: Long = temp4;
val moreB: List = temp5;
if (vectorMatch.this.gd2$1(firstB, moreB, firstA$1))
body%21(firstB,moreB){
_m(vectorMatch.this, a, moreB)
}
else
{
val firstB: Long = temp4;
val moreB: List = temp5;
if (vectorMatch.this.gd3$1(firstB, moreB, firstA$1))
body%31(firstB,moreB){
_m(vectorMatch.this, moreA, moreB)
}
else
{
body%41(){
throw new java.lang.Exception("Got here: a: ".+(a).+(" b: ").+(b))
}
}
}
}
}
else
{
body%41()
}
}
}
else
throw new MatchError(temp6)
}
};
You can't use :: for anything other than List. The Vector is failing to match because :: is a case class that extends List, so its unapply method does not work for Vector.
val a :: b = List(1,2,3) // fine
val a :: b = Vector(1,2,3) // error
But you can define your own extractor that works for all sequences:
object +: {
def unapply[T](s: Seq[T]) =
s.headOption.map(head => (head, s.tail))
}
So you can do:
val a +: b = List(1,2,3) // fine
val a +: b = Vector(1,2,3) // fine
Followed pattern match works for List, Seq, LinearSeq, IndexedSeq, Vector.
Vector(1,2) match {
case a +: as => s"$a + $as"
case _ => "empty"
}
In Scala 2.10 object +: was introduced at this commit. Since then, for every SeqLike, you can do:
#annotation.tailrec
def m(a: Seq[Long], b: Seq[Long]): Seq[Long] = {
a match {
case Nil => b
case firstA +: moreA => b match {
case Nil => a
case firstB +: moreB if (firstB < firstA) => m(moreA, b)
case firstB +: moreB if (firstB > firstA) => m(a, moreB)
case firstB +: moreB if (firstB == firstA) => m(moreA, moreB)
case _ => throw new Exception("Got here: a: " + a + " b: " + b)
}
}
}
Code run at Scastie.