Mongodb write performance/load primary vs secondary - mongodb

In a replicated Mongodb environment, is the write performance/load on the secondaries the same as the primaries? If so, or not, why?
Edit: By writes to the secondary I am referring to the automatic propagation of the writes from the primary to the secondary.
Edit2: To help guide the conversation http://docs.mongodb.org/manual/core/replica-set-sync/#multithreaded-replication might suggest that write performance from the primaries to the secondaries might be better since they are performed in batch.

If by load you mean only writes in an isolated or off-peak system then it must be an uninteresting and similar performance/write. and almost who cares. However, in a working system where you have concurrent reads and writes then no. because one can alter that performance/readwrite if you use a 'read preference' of "secondary" or "secondary preferred" (heck, anything but "primary"). Under this scenario a replica set with 11 secondaries and 1 primary one can clearly see that any single secondary has a fraction of cpu/memory/disk/etc competition not only disk contention than the single primary. Recall that the default mode is brutal on the primary. here the secondaries exist only for redundancy vs high-availability.
primary Default mode. All operations read from the current replica set
primary.
One can think of a RAID system whereby mirroring increases redundancy while striping increases performance. (True, not exactly the same mechanics but from the user's pov its a similar result in terms of reads. Sharding is closer to a RAID with striping) Using the default read preference of 'primary' one taps only into mirroring; using a read preference of 'secondary' you tap into the greater throughput.

Related

Can someone give me detailed technical reasons why writing to a secondary in MongoDB replica set is not allowed

I know we can't write to a secondary in MongoDB. But I can't find any technical reason why. In my case, I don't really care if there is a slight delay but write to a secondary might be faster. Please provide some reference if you can. Thanks!!
The reason why you can not write to a secondary is the way replication works:
Secondaries connect to a special collection on the primary, called oplog. This oplog contains operations which were run through the query optimizer. Basically, the oplog is a capped collection, and the secondaries use a tailable cursor to access it's entries and processes it from the oldest to the newest.
When a election takes place because the primary goes down / steps down, the secondary with the most recent oplog entry is elected primary. The secondaries connect to the new primary, query for the oplog entries they haven't processed yet and the cluster is in sync.
This procedure is pretty straight forward. Now imagine one could write to a secondary. All nodes in the cluster would have to have a tailable cursor on all other nodes of the cluster, and maintaining a consistent state in case of one machine failing becomes a very complicated and in case of a failure even race condition dependent thing. Effectively, there could be no guarantee even for eventual consistency any more. It would be a more or less a gamble.
That being said: A replica set is not for load balancing. A replica sets purpose is to enhance the availability and durability of the data. Because reading from a secondary is a non-risky thing, MongoDB made it possible, according to their dogma of offering the maximum of possible features without compromising scalability (which would be severely hampered if one could write to secondaries).
But MongoDB does provide a load balancing feature: sharding. Choosing the right shard key, you can distribute read and write load over (almost) as many shards as you want. Not to mention that you can provide a lot more of the precious RAM for a reasonable price when sharding.
There is a one liner answer:
Multi-master replication is a hairball.
If you was allowed to write to secondaries MongoDB would have to use milti-master replication to ge this working: http://en.wikipedia.org/wiki/Multi-master_replication where essentially evey node copies to each other the OPs (operations) they have received and somehow do it without losing data.
This form of replication has many obsticles to overcome.
One would be throughput; remember that OPs need to transfer across the entire network so it is possible you might actually lose throughput while adding consistentcy problems. So getting better throughput would be a problem. It is much having a secondary, taking all of the primaries OPs and then its own for replication outbound and then asking it to do yet another job.
Adding consistentcy over a distributed set like this would also be hazardous, one main question that bugs MongoDB when asking if a member is down or is: "Is it really down or just unavailable?". It is almost impossible to ensure true consistentcy in a distributed set like this, at the very least tricky.
Those are just two problems immediately.
Essentially, to sum up, MongoDB does not yet possess mlti-master replication. It could in the future but I would not be jumping for joy if it does, I will most likely ignore such a feature, normal replication and sharding in both ACID and non-ACID databases causes enough blood pressure.

Why is MongoDB supposed to Consistent & Partition tolerant but not Available [duplicate]

Everywhere I look, I see that MongoDB is CP.
But when I dig in I see it is eventually consistent.
Is it CP when you use safe=true? If so, does that mean that when I write with safe=true, all replicas will be updated before getting the result?
MongoDB is strongly consistent by default - if you do a write and then do a read, assuming the write was successful you will always be able to read the result of the write you just read. This is because MongoDB is a single-master system and all reads go to the primary by default. If you optionally enable reading from the secondaries then MongoDB becomes eventually consistent where it's possible to read out-of-date results.
MongoDB also gets high-availability through automatic failover in replica sets: http://www.mongodb.org/display/DOCS/Replica+Sets
I agree with Luccas post. You can't just say that MongoDB is CP/AP/CA, because it actually is a trade-off between C, A and P, depending on both database/driver configuration and type of disaster: here's a visual recap, and below a more detailed explanation.
Scenario
Main Focus
Description
No partition
CA
The system is available and provides strong consistency
partition, majority connected
AP
Not synchronized writes from the old primary are ignored
partition, majority not connected
CP
only read access is provided to avoid separated and inconsistent systems
Consistency:
MongoDB is strongly consistent when you use a single connection or the correct Write/Read Concern Level (Which will cost you execution speed). As soon as you don't meet those conditions (especially when you are reading from a secondary-replica) MongoDB becomes Eventually Consistent.
Availability:
MongoDB gets high availability through Replica-Sets. As soon as the primary goes down or gets unavailable else, then the secondaries will determine a new primary to become available again. There is an disadvantage to this: Every write that was performed by the old primary, but not synchronized to the secondaries will be rolled back and saved to a rollback-file, as soon as it reconnects to the set(the old primary is a secondary now). So in this case some consistency is sacrificed for the sake of availability.
Partition Tolerance:
Through the use of said Replica-Sets MongoDB also achieves the partition tolerance: As long as more than half of the servers of a Replica-Set is connected to each other, a new primary can be chosen. Why? To ensure two separated networks can not both choose a new primary. When not enough secondaries are connected to each other you can still read from them (but consistency is not ensured), but not write. The set is practically unavailable for the sake of consistency.
As a brilliant new article showed up and also some awesome experiments by Kyle in this field, you should be careful when labeling MongoDB, and other databases, as C or A.
Of course CAP helps to track down without much words what the database prevails about it, but people often forget that C in CAP means atomic consistency (linearizability), for example. And this caused me lots of pain to understand when trying to classify. So, besides MongoDB give strong consistency, that doesn't mean that is C. In this way, if one make this classifications, I recommend to also give more depth in how it actually works to not leave doubts.
Yes, it is CP when using safe=true. This simply means, the data made it to the masters disk.
If you want to make sure it also arrived on some replica, look into the 'w=N' parameter where N is the number of replicas the data has to be saved on.
see this and this for more information.
MongoDB selects Consistency over Availability whenever there is a Partition. What it means is that when there's a partition(P) it chooses Consistency(C) over Availability(A).
To understand this, Let's understand how MongoDB does replica set works. A Replica Set has a single Primary node. The only "safe" way to commit data is to write to that node and then wait for that data to commit to a majority of nodes in the set. (you will see that flag for w=majority when sending writes)
Partition can occur in two scenarios as follows :
When Primary node goes down: system becomes unavailable until a new
primary is selected.
When Primary node looses connection from too many
Secondary nodes: system becomes unavailable. Other secondaries will try to
elect a new Primary and current primary will step down.
Basically, whenever a partition happens and MongoDB needs to decide what to do, it will choose Consistency over Availability. It will stop accepting writes to the system until it believes that it can safely complete those writes.
Mongodb never allows write to secondary. It allows optional reads from secondary but not writes. So if your primary goes down, you can't write till a secondary becomes primary again. That is how, you sacrifice High Availability in CAP theorem. By keeping your reads only from primary you can have strong consistency.
I'm not sure about P for Mongo. Imagine situation:
Your replica gets split into two partitions.
Writes continue to both sides as new masters were elected
Partition is resolved - all servers are now connected again
What happens is that new master is elected - the one that has highest oplog, but the data from the other master gets reverted to the common state before partition and it is dumped to a file for manual recovery
all secondaries catch up with the new master
The problem here is that the dump file size is limited and if you had a partition for a long time you can loose your data forever.
You can say that it's unlikely to happen - yes, unless in the cloud where it is more common than one may think.
This example is why I would be very careful before assigning any letter to any database. There's so many scenarios and implementations are not perfect.
If anyone knows if this scenario has been addressed in later releases of Mongo please comment! (I haven't been following everything that was happening for some time..)
Mongodb gives up availability. When we talk about availability in the context of the CAP theorem, it is about avoiding single points of failure that can go down. In mongodb. there is a primary router host. and if that goes down,there is gonna be some downtime in the time that it takes for it to elect a new replacement server to take its place. In practical, that is gonna happen very qucikly. we do have a couple of hot standbys sitting there ready to go. So as soon as the system detects that primary routing host went down, it is gonna switch over to a new one pretty much right away. Technically speaking it is still single point of failure. There is still a chance of downtime when that happens.
There is a config server, that is the primary and we have an app server, that is primary at any given time. even though we have multiple backups, there is gonna be a brief period of downtime if any of those servers go down. the system has to first detect that there was an outage and then remaining servers need to reelect a new primary host to take its place. that might take a few seconds and this is enough to say that mongodb is trading off the availability

mongo - read Preference design strategy

I have an application for which I am tasked with designing a mongo backed data storage.
The application goals are to provide the latest data ( no stale data ) with the fastest load times.
The data size is in the order of a few millions with the application being write heavy.
In choosing what the read strategy is given a 3-node replica set ( 1 primary, 1 secondary, 1 arbiter ), I came across two different strategies to determine where to source the reads from -
Read from the secondary to reduce load on primary. With the writeConcern = REPLICA_SAFE, thus ensuring the writes are done on both primary and the secondary. Set the read preference. to secondaryPreferred.
Always read from primary. but ensure the data is in primary before reading. So set writeConcern= SAFE . The read preference is default - primaryPreferred .
What are the things to be considered before choosing one of the options.
According to the documentation REPLICA_SAFE is a deprecated term and should be replaced with REPLICA_ACKNOWLEDGED. The other problem here is that the w value here appears to be 2 from this constant.
This is a problem for your configuration, as you have your Primary and only one Secondary, combined with an arbiter. In the event of a node going down, or being otherwise unreachable, with the level set as this it is looking to acknowledge all writes from 2 nodes where there will not be 2 nodes available. You can leave write operations hanging in this way.
The better case for your configuration would be MAJORITY, as no matter the number of nodes it will ensure writes to the Primary and the "majority" of the secondaries. But in your case any write concern condition involving more than the PRIMARY will block on all writes, if one of your nodes is down or unavailable, as you would have to have at least two more secondary nodes available so that there would still be a "majority" of nodes to acknowledge the write. Or drop the ARBITER and have two SECONDARY nodes.
So you will have to stick to the default w=1 where all writes are acknowledged to the PRIMARY unless you can deal with writes failing when your one SECONDARY goes down.
You can set the read preference to secondaryPreferred as long as you accept that you can ""possibly" be reading stale or not the latest representation of your data as the only real guarantee is of a write to the Primary node. The general replication considerations remain, in that the nodes should be somewhat equal in processing capability or this can lead to lag or general performance degradation as a result of your query operations.
Remember that replication is implemented for redundancy and is not a system for improving performance. If you are looking for performance then perhaps look into scaling up your system hardware or implement sharding to distribute the load.

Where does mongodb stand in the CAP theorem?

Everywhere I look, I see that MongoDB is CP.
But when I dig in I see it is eventually consistent.
Is it CP when you use safe=true? If so, does that mean that when I write with safe=true, all replicas will be updated before getting the result?
MongoDB is strongly consistent by default - if you do a write and then do a read, assuming the write was successful you will always be able to read the result of the write you just read. This is because MongoDB is a single-master system and all reads go to the primary by default. If you optionally enable reading from the secondaries then MongoDB becomes eventually consistent where it's possible to read out-of-date results.
MongoDB also gets high-availability through automatic failover in replica sets: http://www.mongodb.org/display/DOCS/Replica+Sets
I agree with Luccas post. You can't just say that MongoDB is CP/AP/CA, because it actually is a trade-off between C, A and P, depending on both database/driver configuration and type of disaster: here's a visual recap, and below a more detailed explanation.
Scenario
Main Focus
Description
No partition
CA
The system is available and provides strong consistency
partition, majority connected
AP
Not synchronized writes from the old primary are ignored
partition, majority not connected
CP
only read access is provided to avoid separated and inconsistent systems
Consistency:
MongoDB is strongly consistent when you use a single connection or the correct Write/Read Concern Level (Which will cost you execution speed). As soon as you don't meet those conditions (especially when you are reading from a secondary-replica) MongoDB becomes Eventually Consistent.
Availability:
MongoDB gets high availability through Replica-Sets. As soon as the primary goes down or gets unavailable else, then the secondaries will determine a new primary to become available again. There is an disadvantage to this: Every write that was performed by the old primary, but not synchronized to the secondaries will be rolled back and saved to a rollback-file, as soon as it reconnects to the set(the old primary is a secondary now). So in this case some consistency is sacrificed for the sake of availability.
Partition Tolerance:
Through the use of said Replica-Sets MongoDB also achieves the partition tolerance: As long as more than half of the servers of a Replica-Set is connected to each other, a new primary can be chosen. Why? To ensure two separated networks can not both choose a new primary. When not enough secondaries are connected to each other you can still read from them (but consistency is not ensured), but not write. The set is practically unavailable for the sake of consistency.
As a brilliant new article showed up and also some awesome experiments by Kyle in this field, you should be careful when labeling MongoDB, and other databases, as C or A.
Of course CAP helps to track down without much words what the database prevails about it, but people often forget that C in CAP means atomic consistency (linearizability), for example. And this caused me lots of pain to understand when trying to classify. So, besides MongoDB give strong consistency, that doesn't mean that is C. In this way, if one make this classifications, I recommend to also give more depth in how it actually works to not leave doubts.
Yes, it is CP when using safe=true. This simply means, the data made it to the masters disk.
If you want to make sure it also arrived on some replica, look into the 'w=N' parameter where N is the number of replicas the data has to be saved on.
see this and this for more information.
MongoDB selects Consistency over Availability whenever there is a Partition. What it means is that when there's a partition(P) it chooses Consistency(C) over Availability(A).
To understand this, Let's understand how MongoDB does replica set works. A Replica Set has a single Primary node. The only "safe" way to commit data is to write to that node and then wait for that data to commit to a majority of nodes in the set. (you will see that flag for w=majority when sending writes)
Partition can occur in two scenarios as follows :
When Primary node goes down: system becomes unavailable until a new
primary is selected.
When Primary node looses connection from too many
Secondary nodes: system becomes unavailable. Other secondaries will try to
elect a new Primary and current primary will step down.
Basically, whenever a partition happens and MongoDB needs to decide what to do, it will choose Consistency over Availability. It will stop accepting writes to the system until it believes that it can safely complete those writes.
Mongodb never allows write to secondary. It allows optional reads from secondary but not writes. So if your primary goes down, you can't write till a secondary becomes primary again. That is how, you sacrifice High Availability in CAP theorem. By keeping your reads only from primary you can have strong consistency.
I'm not sure about P for Mongo. Imagine situation:
Your replica gets split into two partitions.
Writes continue to both sides as new masters were elected
Partition is resolved - all servers are now connected again
What happens is that new master is elected - the one that has highest oplog, but the data from the other master gets reverted to the common state before partition and it is dumped to a file for manual recovery
all secondaries catch up with the new master
The problem here is that the dump file size is limited and if you had a partition for a long time you can loose your data forever.
You can say that it's unlikely to happen - yes, unless in the cloud where it is more common than one may think.
This example is why I would be very careful before assigning any letter to any database. There's so many scenarios and implementations are not perfect.
If anyone knows if this scenario has been addressed in later releases of Mongo please comment! (I haven't been following everything that was happening for some time..)
Mongodb gives up availability. When we talk about availability in the context of the CAP theorem, it is about avoiding single points of failure that can go down. In mongodb. there is a primary router host. and if that goes down,there is gonna be some downtime in the time that it takes for it to elect a new replacement server to take its place. In practical, that is gonna happen very qucikly. we do have a couple of hot standbys sitting there ready to go. So as soon as the system detects that primary routing host went down, it is gonna switch over to a new one pretty much right away. Technically speaking it is still single point of failure. There is still a chance of downtime when that happens.
There is a config server, that is the primary and we have an app server, that is primary at any given time. even though we have multiple backups, there is gonna be a brief period of downtime if any of those servers go down. the system has to first detect that there was an outage and then remaining servers need to reelect a new primary host to take its place. that might take a few seconds and this is enough to say that mongodb is trading off the availability

mongodb replica sets read locking

We have a Mongo Replica Set with three nodes in three datacenters. Two of them with data and the other one is an arbitrer
We are doing stressful writes in the primary with almost 100% of locking so we are doing the reads in the replica node (secondary). Our problem is that the reads are slow too in the secondary due to those writes.
Are we missing anything?
We are doing stressful writes in the primary with almost 100% of locking so we are doing the reads in the replica node (secondary). Our problem is that the reads are slow too in the secondary due to those writes.
When you perform a write to the primary, that write also has to be performed on the secondary. So the secondary is doing the same work as the primary.
So if you have 100% locking on the primary, you have 100% locking on the secondary.
Moving reads to the secondary probably won't help because your IO on the primary is probably completely locked so it can't keep up.
Run iostat and top and figure out where the bottleneck is. It's likely that you'll need power, but it may just be an indexing problem.