Related
I'm working on a filtered back projection algorithm using the central slice theorem for a homework assignment and while I understand the theory on paper, I've run into an issue implementing it in Matlab. I was provided with a skeleton to follow to do it but there is a step that I think I'm maybe misunderstanding. Here is what I have:
function img = sampleFBP(sino,angs)
% This step is necessary so that frequency information is preserved: we pad
% the sinogram with zeros so that this is ensured.
sino = padarray(sino, floor(size(sino,1)/2), 'both');
% diagDim should be the length of an individual row of the sinogram - don't
% hardcode this!
diagDim = size(sino, 2);
% The 2DFT (2D Fourier transform) of our image will start as a matrix of
% all zeros.
fimg = zeros(diagDim);
% Design your 1-d ramp filter.
rampFilter_1d = abs(linspace(-1, 1, diagDim))';
rowIndex = 1;
for nn = angs
% Each contribution to the image's 2DFT will also begin as all zero.
imContrib = zeros(diagDim);
% Get the current row of the sinogram - use rowIndex.
curRow = sino(rowIndex,:);
% Take the 1D Fourier transform the current row - be careful, as it's
% necessary to perform ifftshift and fftshift as Matlab tends to
% place zero-frequency components of a spectrum at the edges.
fourierCurRow = fftshift(fft(ifftshift(curRow)));
% Place the Fourier-transformed sino row and place it at the center of
% the next image contribution. Add the ramp filter in Fourier domain.
imContrib(floor(diagDim/2), :) = fourierCurRow;
imContrib = imContrib * fft(rampFilter_1d);
% Rotate the current image contribution to be at the correct angle on
% the 2D Fourier-space image.
imContrib = imrotate(imContrib, nn, 'crop');
% Add the current image contribution to the running representation of
% the image in Fourier space!
fimg = fimg + imContrib;
rowIndex = rowIndex + 1;
end
% Finally, just take the inverse 2D Fourier transform of the image! Don't
% forget - you may need an fftshift or ifftshift here.
rcon = fftshift(ifft2(ifftshift(fimg)));
The sinogram I'm inputting is just the output of the radon function on a Shepp-Logan phantom from 0 to 179 degrees. Running the code as it is now gives me a black image. I think I'm missing something in the loop where I add the FTs of rows to the image. From my understanding of the central slice theorem, what I think should be happening is this:
Initialize an array the same size as the what the 2DFT will be (i.e., diagDim x diagDim). This is the Fourier space.
Take a row of the sinogram which corresponds to the line integral information from a single angle and apply a 1D FT to it
According to the Central Slice Theorem, the FT of this line integral is a line through the Fourier domain that passes through the origin at an angle that corresponds to the angle at which the projection was taken. So to emulate that, I take the FT of that line integral and place it in the center row of the diagDim x diagDim matrix I created
Next I take the FT of the 1D ramp filter I created and multiply it with the FT of the line integral. Multiplication in the Fourier domain is equivalent to a convolution in the spatial domain so this convolves the line integral with the filter.
Now I rotate the entire matrix by the angle the projection was taken at. This should give me a diagDim x diagDim matrix with a single line of information passing through the center at an angle. Matlab increases the size of the matrix when it is rotated but since the sinogram was padded at the beginning, no information is lost and the matrices can still be added
If all of these empty matrices with a single line through the center are added up together, it should give me the complete 2D FT of the image. All that needs to be done is take the inverse 2D FT and the original image should be the result.
If the problem I'm running into is something conceptual, I'd be grateful if someone could point out where I messed up. If instead this is a Matlab thing (I'm still kind of new to Matlab), I'd appreciate learning what it is I missed.
The code that you have posted is a pretty good example of filtered backprojection (FBP) and I believe could be useful to people who wanted to learn the basis of FBP. One can use the function iradon(...) in MATLAB (see here) to perform FBP using a variety of filters. In your case of course, the point is to learn the basis of the central slice theorem and so finding a short cut is not the point. I have also learned a lot and refreshed my knowledge through answering to your question!
Now your code has been perfectly commented and describes the steps that need to be taken. There are a couple of subtle [programming] issues that need to be fixed so that the code works just fine.
First, your image representation in Fourier domain may end up having a missing array due to floor(diagDim/2) depending on the size of the sinogram. I would change this to round(diagDim/2) to have complete dataset in fimg. Be aware that this may lead to an error for certain sinogram sizes if not handled correctly. I would encourage you to visualize fimg to understand what that missing array is and why it matters.
Second issue is that your sinogram needs to be transposed to be consistent with your algorithm. Hence an addition of sino = sino'. Again, I do encourage you to try the code without this to see what happens! Note that zero padding must be happened along the views to avoid artifacts due to aliasing. I will demonstrate an example for this in this answer.
Third and most importantly, imContrib is a temporary holder for an array along fimg. Therefore, it must maintain the same size as fimg, so
imContrib = imContrib * fft(rampFilter_1d);
should be replaced with
imContrib(floor(diagDim/2), :) = imContrib(floor(diagDim/2), :)' .* rampFilter_1d;
Note that the Ramp filter is linear in frequency domain (thanks to #Cris Luengo for correcting this error). Therefore, you should drop the fft in fft(rampFilter_1d) as this filter is applied in the frequency domain (remember fft(x) decomposes the domain of x, such as time, space, etc to its frequency content).
Now a complete example to show how it works using the modified Shepp-Logan phantom:
angs = 0:359; % angles of rotation 0, 1, 2... 359
init_img = phantom('Modified Shepp-Logan', 100); % Initial image 2D [100 x 100]
sino = radon(init_img, angs); % Create a sinogram using radon transform
% Here is your function ....
% This step is necessary so that frequency information is preserved: we pad
% the sinogram with zeros so that this is ensured.
sino = padarray(sino, floor(size(sino,1)/2), 'both');
% Rotate the sinogram 90-degree to be compatible with your codes definition of view and radial positions
% dim 1 -> view
% dim 2 -> Radial position
sino = sino';
% diagDim should be the length of an individual row of the sinogram - don't
% hardcode this!
diagDim = size(sino, 2);
% The 2DFT (2D Fourier transform) of our image will start as a matrix of
% all zeros.
fimg = zeros(diagDim);
% Design your 1-d ramp filter.
rampFilter_1d = abs(linspace(-1, 1, diagDim))';
rowIndex = 1;
for nn = angs
% fprintf('rowIndex = %g => nn = %g\n', rowIndex, nn);
% Each contribution to the image's 2DFT will also begin as all zero.
imContrib = zeros(diagDim);
% Get the current row of the sinogram - use rowIndex.
curRow = sino(rowIndex,:);
% Take the 1D Fourier transform the current row - be careful, as it's
% necessary to perform ifftshift and fftshift as Matlab tends to
% place zero-frequency components of a spectrum at the edges.
fourierCurRow = fftshift(fft(ifftshift(curRow)));
% Place the Fourier-transformed sino row and place it at the center of
% the next image contribution. Add the ramp filter in Fourier domain.
imContrib(round(diagDim/2), :) = fourierCurRow;
imContrib(round(diagDim/2), :) = imContrib(round(diagDim/2), :)' .* rampFilter_1d; % <-- NOT fft(rampFilter_1d)
% Rotate the current image contribution to be at the correct angle on
% the 2D Fourier-space image.
imContrib = imrotate(imContrib, nn, 'crop');
% Add the current image contribution to the running representation of
% the image in Fourier space!
fimg = fimg + imContrib;
rowIndex = rowIndex + 1;
end
% Finally, just take the inverse 2D Fourier transform of the image! Don't
% forget - you may need an fftshift or ifftshift here.
rcon = fftshift(ifft2(ifftshift(fimg)));
Note that your image has complex value. So, I use imshow(abs(rcon),[]) to show the image. A couple of helpful images (food for thought) with the final reconstructed image rcon:
And here is the same image if you comment out the zero padding step (i.e. comment out sino = padarray(sino, floor(size(sino,1)/2), 'both');):
Note the different object size in the reconstructed images with and without zero padding. The object shrinks when the sinogram is zero padded since the radial contents are compressed.
I want to implement two dimensional matched filter for blood vessel extraction according to the paper "Detection of Blood Vessels in Retinal Images Using Two-Dimensional Matched Filters" by Chaudhuri et al., IEEE Trans. on Medical Imaging, 1989 (there's a PDF on the author's web site).
A brief discription is that blood vessel's cross-section has a gaussian distribution and therefore I want to use gaussian matched filter to increase SNR. Such a kernel may be mathematically expressed as:
K(x,y) = -exp(-x^2/2*sigma^2) for |x|<3*sigma, |y|<L/2
L here is the length of vessel with fixed orientation. Experimentally sigma=1.5 and L = 7.
My MATLAB code for this part is:
s = 1.5; %sigma
t = -3*s:3*s;
theta=0:15:165; %different rotations
%one dimensional kernel
x = 1/sqrt(6*s)*exp(-t.^2/(2*s.^2));
L=7;
%two dimensional gaussian kernel
x2 = repmat(x,L,1);
Consider the response of this filter for a pixel belonging to the background retina. Assuming the background to have constant intensity with zero mean additive Gaussian white noise, the expected value of the filter output should ideally be zero. The convolution kernel is, therefore, modified by subtracting the mean value of s(t) from the function itself. The mean value of the kernel is determined as: m = Sum(K(x,y))/(number of points).
Thus, the convolutional mask used in this algorithm is given by: K(x, y) = K(x,y) - m.
My MATLAB code:
m = sum(x2(:))/(size(x2,1)*size(x2,2));
x2 = x2-m;
A vessel may be oriented at any angle 0<theta<180 and the matched filter response is maximum when when it is aligned at theta+- 90 (cross-section distribution is gaussian not the vessel itself).
Thus we need to rotate the matched filter 12 times with 15 degree increment.
My MATLAB code is attached here but I don't get a desirable result. Any help is appreciated.
%apply rotated matched filter on image
r = {};
for k = 1:12
x3=imrotate(x2,theta(k),'crop');%figure;imagesc(x3);colormap gray;
r{k}=conv2(img,x3);
end
w=[];h = zeros(584,565);
for i = 1:565
for j = 1:584
for k = 1:32
w= [w ,r{k}(j,i)];
end
h(j,i)=max(abs(w));
w = [];
end
end
%show result
figure('Name','after matched filter');imagesc(h);colormap gray
For rotation I used imrotate which seems more sensible to me but in the paper it is different: suppose p=[x,y] be a discrete point in the kernel. To compute coefficients in the rotated kernel we have [u,v] = p*Rotation_Matrix.
Rotation_Matrix=[cos(theta),sin(theta);-sin(theta),cos(theta)]
And the kernel is:
K(x,y) = -exp(-u^2/2*s^2)
But the new kernel doesn't have a gaussian shape anymore. Using imrotate preserves gaussian shape. So what is the benefit of using Rotation matrix?
Input image is:
Output:
Matched filtering helps increase SNR but background noise is amplified too.
Am I right to use imrotate to rotate the kernel? My main problem is with rotation matrix that why and what is the right code to implement it.
The reason to build the filter from its analytic expression for each rotation, rather than using imrotate, is that the filter extent is not circular, and therefore rotating brings in "new" pixel values and pushes some other pixels out of the kernel. Furthermore, rotating a kernel constructed as here (smooth transition along one direction, step edge along the other dimension) requires different interpolation methods along each dimension, which imrotate cannot do. The resulting rotated kernel will always be wrong.
Both these issues can be easily seen when displaying the kernel you make together with two rotated versions:
This display brings an additional issues to the front: the kernel is not centered on a pixel, causing it to shift the output by half a pixel.
Note also that, when subtracting the mean, it is important that this mean be computed only over the original domain of the filter, and that any zeros used to pad this domain to a rectangular shape remain zero (these should not become negative).
The rotated kernels can be constructed as follows:
m = max(ceil(3*s),(L-1)/2);
[x,y] = meshgrid(-m:m,-m:m); % non-rotated coordinate system, contains (0,0)
t = pi/6; % angle in radian
u = cos(t)*x - sin(t)*y; % rotated coordinate system
v = sin(t)*x + cos(t)*y; % rotated coordinate system
N = (abs(u) <= 3*s) & (abs(v) <= L/2); % domain
k = exp(-u.^2/(2*s.^2)); % kernel
k = k - mean(k(N));
k(~N) = 0; % set kernel outside of domain to 0
This is the result for the three rotations used in the example above (the grey around the edges of the kernel corresponds to the value 0, the black pixels have a negative value):
Another issue is that you use conv2 with the default 'full' output shape, you should be using 'same' here, so that the output of the filter matches the input.
Note that, instead of computing all filter responses, and computing the max afterwards, it is much easier to compute the max as you compute each filter response. All of the above leads to the following code:
img = im2double(rgb2gray(img));
s = 1.5; %sigma
L = 7;
theta = 0:15:165; %different rotations
out = zeros(size(img));
m = max(ceil(3*s),(L-1)/2);
[x,y] = meshgrid(-m:m,-m:m); % non-rotated coordinate system, contains (0,0)
for t = theta
t = t / 180 * pi; % angle in radian
u = cos(t)*x - sin(t)*y; % rotated coordinate system
v = sin(t)*x + cos(t)*y; % rotated coordinate system
N = (abs(u) <= 3*s) & (abs(v) <= L/2); % domain
k = exp(-u.^2/(2*s.^2)); % kernel
k = k - mean(k(N));
k(~N) = 0; % set kernel outside of domain to 0
res = conv2(img,k,'same');
out = max(out,res);
end
out = out/max(out(:)); % force output to be in [0,1] interval that MATLAB likes
imwrite(out,'so_result.png')
I get the following output:
I am working on images to detect and fit the largest possible circle in any of the free areas of an image containing distributed particles:
(able to detect the location of particle).
One direction is to define a circle touching any 3-point combination, checking if the circle is empty, then finding the largest circle among all empty circles. However, it leads to a huge number of combination i.e. C(n,3), where n is the total number of particles in the image.
I would appreciate if anyone can provide me any hint or alternate method that I can explore.
Lets do some maths my friend, as maths will always get to the end!
Wikipedia:
In mathematics, a Voronoi diagram is a partitioning of a plane into
regions based on distance to points in a specific subset of the plane.
For example:
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
voronoi(x,y);
The nice thing about this diagram is that if you notice, all the edges/vertices of those blue areas are all to equal distance to the points around them. Thus, if we know the location of the vertices, and compute the distances to the closest points, then we can choose the vertex with highest distance as our center of the circle.
Interestingly, the edges of a Voronoi regions are also defined as the circumcenters of the triangles generated by a Delaunay triangulation.
So if we compute the Delaunay triangulation of the area, and their circumcenters
dt=delaunayTriangulation([x;y].');
cc=circumcenter(dt); %voronoi edges
And compute the distances between the circumcenters and any of the points that define each triangle:
for ii=1:size(cc,1)
if cc(ii,1)>0 && cc(ii,1)<5 && cc(ii,2)>0 && cc(ii,2)<5
point=dt.Points(dt.ConnectivityList(ii,1),:); %the first one, or any other (they are the same distance)
distance(ii)=sqrt((cc(ii,1)-point(1)).^2+(cc(ii,2)-point(2)).^2);
end
end
Then we have the center (cc) and radius (distance) of all possible circles that have no point inside them. We just need the biggest one!
[r,ind]=max(distance); %Tada!
Now lets plot
hold on
ang=0:0.01:2*pi;
xp=r*cos(ang);
yp=r*sin(ang);
point=cc(ind,:);
voronoi(x,y)
triplot(dt,'color','r','linestyle',':')
plot(point(1)+xp,point(2)+yp,'k');
plot(point(1),point(2),'g.','markersize',20);
Notice how the center of the circle is on one vertex of the Voronoi diagram.
NOTE: this will find the center inside [0-5],[0-5]. you can easily modify it to change this constrain. You can also try to find the circle that fits on its entirety inside the interested area (as opposed to just the center). This would require a small addition in the end where the maximum is obtained.
I'd like to propose another solution based on a grid search with refinement. It's not as advanced as Ander's or as short as rahnema1's, but it should be very easy to follow and understand. Also, it runs quite fast.
The algorithm contains several stages:
We generate an evenly-spaced grid.
We find the minimal distances of points in the grid to all provided points.
We discard all points whose distances are below a certain percentile (e.g. 95th).
We choose the region which contains the largest distance (this should contain the correct center if my initial grid is fine enough).
We create a new meshgrid around the chosen region and find distances again (this part is clearly sub-optimal, because the distances are computed to all points, including far and irrelevant ones).
We iterate the refinement within the region, while keeping an eye on the variance of the top 5% of values -> if it drops below some preset threshold we break.
Several notes:
I have made the assumption that circles cannot go beyond the scattered points' extent (i.e. the bounding square of the scatter acts as an "invisible wall").
The appropriate percentile depends on how fine the initial grid is. This will also affect the amount of while iterations, and the optimal initial value for cnt.
function [xBest,yBest,R] = q42806059
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
%% Find the approximate region(s) where there exists a point farthest from all the rest:
xExtent = linspace(min(x),max(x),numel(x));
yExtent = linspace(min(y),max(y),numel(y)).';
% Create a grid:
[XX,YY] = meshgrid(xExtent,yExtent);
% Compute pairwise distance from grid points to free points:
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
% Intermediate plot:
% figure(); plot(x,y,'.k'); hold on; contour(XX,YY,D); axis square; grid on;
% Remove irrelevant candidates:
D(D<prctile(D(:),95)) = NaN;
D(D > xExtent | D > yExtent | D > yExtent(end)-yExtent | D > xExtent(end)-xExtent) = NaN;
%% Keep only the region with the largest distance
L = bwlabel(~isnan(D));
[~,I] = max(table2array(regionprops('table',L,D,'MaxIntensity')));
D(L~=I) = NaN;
% surf(XX,YY,D,'EdgeColor','interp','FaceColor','interp');
%% Iterate until sufficient precision:
xExtent = xExtent(~isnan(min(D,[],1,'omitnan')));
yExtent = yExtent(~isnan(min(D,[],2,'omitnan')));
cnt = 1; % increase or decrease according to the nature of the problem
while true
% Same ideas as above, so no explanations:
xExtent = linspace(xExtent(1),xExtent(end),20);
yExtent = linspace(yExtent(1),yExtent(end),20).';
[XX,YY] = meshgrid(xExtent,yExtent);
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
D(D<prctile(D(:),95)) = NaN;
I = find(D == max(D(:)));
xBest = XX(I);
yBest = YY(I);
if nanvar(D(:)) < 1E-10 || cnt == 10
R = D(I);
break
end
xExtent = (1+[-1 +1]*10^-cnt)*xBest;
yExtent = (1+[-1 +1]*10^-cnt)*yBest;
cnt = cnt+1;
end
% Finally:
% rectangle('Position',[xBest-R,yBest-R,2*R,2*R],'Curvature',[1 1],'EdgeColor','r');
The result I'm getting for Ander's example data is [x,y,r] = [0.7832, 2.0694, 0.7815] (which is the same). The execution time is about half of Ander's solution.
Here are the intermediate plots:
Contour of the largest (clear) distance from a point to the set of all provided points:
After considering distance from the boundary, keeping only the top 5% of distant points, and considering only the region which contains the largest distance (the piece of surface represents the kept values):
And finally:
You can use bwdist from Image Processing Toolbox to compute the distance transform of the image. This can be regarded as a method to create voronoi diagram that well explained in #AnderBiguri's answer.
img = imread('AbmxL.jpg');
%convert the image to a binary image
points = img(:,:,3)<200;
%compute the distance transform of the binary image
dist = bwdist(points);
%find the circle that has maximum radius
radius = max(dist(:));
%find position of the circle
[x y] = find(dist == radius);
imshow(dist,[]);
hold on
plot(y,x,'ro');
The fact that this problem can be solved using a "direct search" (as can be seen in another answer) means one can look at this as a global optimization problem. There exist various ways to solve such problems, each appropriate for certain scenarios. Out of my personal curiosity I have decided to solve this using a genetic algorithm.
Generally speaking, such an algorithm requires us to think of the solution as a set of "genes" subject to "evolution" under a certain "fitness function". As it happens, it's quite easy to identify the genes and the fitness function in this problem:
Genes: x , y, r.
Fitness function: technically, maximum area of circle, but this is equivalent to the maximum r (or minimum -r, since the algorithm requires a function to minimize).
Special constraint - if r is larger than the euclidean distance to the closest of the provided points (that is, the circle contains a point), the organism "dies".
Below is a basic implementation of such an algorithm ("basic" because it's completely unoptimized, and there is lot of room for optimizationno pun intended in this problem).
function [x,y,r] = q42806059b(cloudOfPoints)
% Problem setup
if nargin == 0
rng(1)
cloudOfPoints = rand(100,2)*5; % equivalent to Ander's initialization.
end
%{
figure(); plot(cloudOfPoints(:,1),cloudOfPoints(:,2),'.w'); hold on; axis square;
set(gca,'Color','k'); plot(0.7832,2.0694,'ro'); plot(0.7832,2.0694,'r*');
%}
nVariables = 3;
options = optimoptions(#ga,'UseVectorized',true,'CreationFcn',#gacreationuniform,...
'PopulationSize',1000);
S = max(cloudOfPoints,[],1); L = min(cloudOfPoints,[],1); % Find geometric bounds:
% In R2017a: use [S,L] = bounds(cloudOfPoints,1);
% Here we also define distance-from-boundary constraints.
g = ga(#(g)vectorized_fitness(g,cloudOfPoints,[L;S]), nVariables,...
[],[], [],[], [L 0],[S min(S-L)], [], options);
x = g(1); y = g(2); r = g(3);
%{
plot(x,y,'ro'); plot(x,y,'r*');
rectangle('Position',[x-r,y-r,2*r,2*r],'Curvature',[1 1],'EdgeColor','r');
%}
function f = vectorized_fitness(genes,pts,extent)
% genes = [x,y,r]
% extent = [Xmin Ymin; Xmax Ymax]
% f, the fitness, is the largest radius.
f = min(pdist2(genes(:,1:2), pts, 'euclidean'), [], 2);
% Instant death if circle contains a point:
f( f < genes(:,3) ) = Inf;
% Instant death if circle is too close to boundary:
f( any( genes(:,3) > genes(:,1:2) - extent(1,:) | ...
genes(:,3) > extent(2,:) - genes(:,1:2), 2) ) = Inf;
% Note: this condition may possibly be specified using the A,b inputs of ga().
f(isfinite(f)) = -genes(isfinite(f),3);
%DEBUG:
%{
scatter(genes(:,1),genes(:,2),10 ,[0, .447, .741] ,'o'); % All
z = ~isfinite(f); scatter(genes(z,1),genes(z,2),30,'r','x'); % Killed
z = isfinite(f); scatter(genes(z,1),genes(z,2),30,'g','h'); % Surviving
[~,I] = sort(f); scatter(genes(I(1:5),1),genes(I(1:5),2),30,'y','p'); % Elite
%}
And here's a "time-lapse" plot of 47 generations of a typical run:
(Where blue points are the current generation, red crosses are "insta-killed" organisms, green hexagrams are the "non-insta-killed" organisms, and the red circle marks the destination).
I'm not used to image processing, so it's just an Idea:
Implement something like a gaussian filter (blur) which transforms each particle (pixels) to a round gradiant with r=image_size (all of them overlapping). This way, you should get a picture where the most white pixels should be the best results. Unfortunately, the demonstration in gimp failed because the extreme blurring made the dots disappearing.
Alternatively, you could incrementelly extend all existing pixels by marking all neighbour pixels in an area (example: r=4), the pixels left would be the same result (those with the biggest distance to any pixel)
I have been reading up quite a bit on Hough circles and how it can be used to detect the center and radius of a circular object. Although I understood how the transform works I am still not able to to understand how to get the center of a circle. The code snippet below is customized purely for coins.png in MATLAB. I tried it with a slightly more complex picture and it fails miserably. I am fixing the radius and then getting the accumulator matrix.
Code:
temp = accum;
temp(find(temp<40))=0; %Thresholding
imshow(temp,[0 max(temp(:))])
temp = imdilate(temp, ones(6,6)); %Dilating
imshow(temp,[0 max(max(temp))]);
temp = imerode(temp,ones(3,3)); %Eroding
imshow(temp,[0 max(max(temp))]);
s = regionprops(im2bw(temp),'centroid'); %Computing centroid
centroids = cat(1, s.Centroid);
I wanted to test the code out on a different picture and found this one on google. The Hough Transform produced a favorable result, but it's more overlapping than the previous case and my method fails.
Can someone suggest what the best method is to compute the centroid of the hough circle?
Original image:
Full Code:
%%Read and find edges using a filter
i = imread('coins4.jpg');
i = rgb2gray(i);
i = imresize(i,0.125);
i_f = edge(i, 'canny',[0.01 0.45]);
imshow(i_f)
%%
[x y] = find(i_f>0); % Finds where the edges are and stores the x and y coordinates
edge_index = size(x);
radius = 30; %Fixed radius value
theta = 0:0.01:2*pi;
accum = zeros(size(i,1), size(i,2)); %Create an accumulator matrix.
r_co = radius*cos(theta);
r_si = radius*sin(theta);
x1 = repmat(x, 1, length(r_co));
y1 = repmat(y, 1, length(r_si));
x_r_co = repmat(r_co, length(x),1);
y_r_si = repmat(r_si, length(y),1);
%% Filling the accumulator
a = x1 - x_r_co;
b = y1 - y_r_si;
for cnt = 1:numel(a)
a_cnt = round(a(cnt));
b_cnt = round(b(cnt));
if(a_cnt>0 && b_cnt>0 && a_cnt<=size(accum,1) && b_cnt<=size(accum,2))
accum(a_cnt,b_cnt) = accum(a_cnt,b_cnt) + 1;
end
end
imshow(accum,[0 max(max(accum))]);
%% Thresholding and get the center of the circle.
close all;
temp = accum;
temp(find(temp<40))=0;
imshow(temp,[0 max(temp(:))])
temp = imdilate(temp, ones(6,6));
imshow(temp,[0 max(max(temp))]);
temp = imerode(temp,ones(3,3));
imshow(temp,[0 max(max(temp))]);
s = regionprops(im2bw(temp),'centroid');
centroids = cat(1, s.Centroid);
imshow(i);
hold on;
plot(centroids(:,1), centroids(:,2),'*b')
If you want to stick with the 2D image you have now, this is a simple algorithm that might work for your first image since all the coins are about the same size and it isn't too cluttered:
find the global maximum of your accumulator array using [~,max_idx] = max(accum(:)); [i,j] = ind2sub(size(accum), max_idx];
Take a small neighbourhood around this pixel (maybe a square with a 10 pixel radius) and calculate its center of mass and get its index (this basically finds the middle of the bright rings you see)
add the center of mass pixel index to a list of circle centers
set all pixels in the small neighbourhood to zero (to prevent double-detection of the same pixel center)
repeat from step 1. until you reach approximately 70% or so of the original global max
If that doesn't work, I'd suggest taking the 3D accumulator approach, which is much better for coins of variable size.
The reason you are getting "donut" shapes for some of the coins rather than circles with intense bright points at the centers is because the radius you are assuming is a little off. If you were to explore the 3rd dimension of the accumulator (the radius dimension), you would find that these "donuts" taper to a point, which you could then detect as a local maximum.
This does require a lot more time and memory but it would lead to the most accurate result and isn't a big adjustment code-wise. You can detect the maxima using a method similar to the one I mentioned above, but in 3D and without the center-of-mass trick in step 2.
So, there is a function in matlab that does exactly what you want, called imfindcircles. You give an image and a range of possible radii, it outputs the computed radii and the centers of the circles. Some other parameters allow to tweak the computation (and in my experience, using them is necessary for good results).
Now, if you want to find the centers and radii yourself (not using matlab) then you want to use a maximum finder on the accumulation matrix. The concept of the Hough transform is that the maxima you find on the accumulation matrix each correspond to a circle (parametrized usually in (radius, x_center, y_center). The tough part here is that you have a gigantic searchspace and many many many many maxima that are not "real" circles but artefacts. I do not know how to reliably differentiate these fake circles of the real ones -- and I expect it's a rather complicated check to do.
Hope this helps!
I have another problem today:
I have a binary matrix t, in which 1 represents a river channel, 0 represents flood plane and surrounding mountains:
t = Alog>10;
figure
imshow(t)
axis xy
For further calculations, I would like to expand the area of the riverchannel a few pixels in each direction. Generally speaking, I want to have a wider channel displayed in the image, to include a larger region in a later hydraulic model.
Here is my attempt, which does work in certain regions, but in areas where the river runs diagonal to the x-y axis, it does not widen the channel. There seems to be a flow in approaching this, which I cannot quite grasp.
[q,o] = find(t == 1);
qq = zeros(length(q),11);
oo = zeros(length(o),11);
% add +-5 pixel to result
for z=1:length(q)
qq(z,:) = q(z)-5:1:q(z)+5;
oo(z,:) = o(z)-5:1:o(z)+5;
end
% create column vectors
qq = qq(:);
oo = oo(:);
cords = [oo qq]; % [x y]
% remove duplicates
cords = unique(cords,'rows');
% get limits of image
[limy limx] = size(t);
% restrict to x-limits
cords = cords(cords(:,1)>=1,:);
cords = cords(cords(:,1)<=limx,:);
% restrict to y-limits
cords = cords(cords(:,2)>=1,:);
cords = cords(cords(:,2)<=limy,:);
% test image
l = zeros(size(img));
l(sub2ind(size(l), cords(:,2)',cords(:,1)')) = 1;
figure
imshow(l)
axis xy
This is the image I get:
It does widen the channel in some areas, but generally there seems to be a flaw with my approach. When I use the same approach on a diagonal line of pixels, it will not widen the line at all, because it will just create more pairs of [1 1; 2 2; 3 3; etc].
Is there a better approach to this or even something from the realm of image processing?
A blur filter with a set diameter should be working somewhat similar, but I could not find anything helpful...
PS: I wasn't allowed to add the images, although I already have 10 rep, so here are the direct links:
http://imageshack.us/a/img14/3122/channelthin.jpg
http://imageshack.us/a/img819/1787/channelthick.jpg
If you have the image processing toolbox, you should use the imdilate function. This performs the morphological dilation operation. Try the following code:
SE = strel('square',3);
channelThick = imdilate(channelThin,SE);
where SE is a 3x3 square structuring element used to dilate the image stored in channelThin. This will expand the regions in channelThin by one pixel in every direction. To expand more, use a larger structuring element, or multiple iterations.
You may apply morphological operations from image processing. Morphological dilation can be used in your example.
From the image processing toolbox, you can use bwmorth command BW2 = bwmorph(BW,'dilate') or imdilate command IM2 = imdilate(IM,SE).
Where IM is your image and SE is the structuring element. You can set SE = ones(3); to dilate the binary image by "one pixel" - but it can be changed depending on your application. Or you can dilate the image several times with the same structuring element if needed.