I am trying to evaluate a triple integral using the 'trapz' command in MATLAB. My integrand is function of gamma1,gamma2,s... I want to evaluate the integral numerically and not symbolically.
syms gamma1; syms gamma2; syms s
f=gamma1*gamma2*exp(-s*10);
x= -20:0.3:20;
y=linspace(0.1,100000,length(x));
z=linspace(0.1,100000,length(x));
[s,gamma1,gamma2] = ndgrid(x,y,z);
mat=eval(f).* (gamma2>gamma1); %MY QUESTION IS HERE
out = trapz(x,trapz(y,trapz(z,mat,3),2),1);
My question is I have a condition on my integrand, it should be evaluated ONLY when gamma2 >gamma1. Is my code correct above i.e is the way I add the logical statement correct?
Yes, the logic is correct: mat will have zeros where the condition gamma2>gamma1 fails.
You can test correctness yourself by using an example where you know the answer already. For instance, integration of f=gamma1*gamma2*s within [0,2] in each variable gives 8 (with paper and pencil), and if the condition gamma2>gamma1 is added, the result is halved (by symmetry), so it becomes 4. And indeed, your code returns approximately 4 for this function.
As an aside: you may want to reconsider the desirability of using the same number of sample points in every dimension, given the disparity of sizes (40 by 100000 by 100000).
Related
Can someone please explain why the following symmetric function cannot pass a certain limit of negative values?
D = 0.1; l = 4;
c = #(x,v) (v/D).*exp(-v*x/D)./(1-exp(-v*l/D));
v_vec = -25:0.01:25;
figure(2)
hold on
plot(v_vec,c(l,v_vec),'b')
plot(v_vec,c(0,v_vec),'r')
Notice at the figure where the blue line chops, this is where I get inf/nan values.
It seems that Matlab is trying to compute a result that is too large, outputs +inf, and then operates on that, which yields +/- inf and NaNs.
For instance, at v=-25, part of the function computes exp(-(-25)*4/0.1), which is exp(1000), and that outputs +inf. (larger than the largest representable double precision float).
You can potentially solve that problem by rewriting your function to avoid operating of such very large (or very small) numbers, say by reorganising the fraction containing exp() functions.
I did encounter the same hurdle using exp() with arguments triggering overflow. Sometimes it is difficult to trace back numeric imprecision or convergence errors. In principle the function definition using exp() only create intermediate issues as your purpose as a transition function. The intention I guess was to provide a continuous function.
My solution to this problem is to divide the argument into regions and provide in each region an approximation function. In your case zero for negative x and proportional to x for positive x. In between you can use the orginal function. Care should be taken to match the approximation at the borders of the regions and the number of continuous differentiations which is important for convergence in loops.
I'm using octave 3.8.1 which works like matlab.
I have an array of thousands of values I've only included three groupings as an example below:
(amp1=0.2; freq1=3; phase1=1; is an example of one grouping)
t=0;
amp1=0.2; freq1=3; phase1=1; %1st grouping
amp2=1.4; freq2=2; phase2=1.7; %2nd grouping
amp3=0.8; freq3=5; phase3=1.5; %3rd grouping
The Octave / Matlab code below solves for Y so I can plug it back into the equation to check values along with calculating values not located in the array.
clear all
t=0;
Y=0;
a1=[.2,3,1;1.4,2,1.7;.8,5,1.5]
for kk=1:1:length(a1)
Y=Y+a1(kk,1)*cos ((a1(kk,2))*t+a1(kk,3))
kk
end
Y
PS: I'm not trying to solve for Y since it's already solved for I'm trying to solve for Phase
The formulas located below are used to calculate Phase but I'm not sure how to put it into a for loop that will work in an array of n groupings:
How would I write the equation / for loop for finding the phase if I want to find freq=2.5 and amp=.23 and the phase is unknown I've looked online and it may require writing non linear equations which I'm not sure how to convert what I'm trying to do into such an equation.
phase1_test=acos(Y/amp1-amp3*cos(2*freq3*pi*t+phase3)/amp1-amp2*cos(2*freq2*pi*t+phase2)/amp1)-2*freq1*pi*t
phase2_test=acos(Y/amp2-amp3*cos(2*freq3*pi*t+phase3)/amp2-amp1*cos(2*freq1*pi*t+phase1)/amp2)-2*freq2*pi*t
phase3_test=acos(Y/amp3-amp2*cos(2*freq2*pi*t+phase2)/amp3-amp1*cos(2*freq1*pi*t+phase1)/amp3)-2*freq2*pi*t
Image of formula below:
I would like to do a check / calculate phases if given a freq and amp values.
I know I have to do a for loop but how do I convert the phase equation into a for loop so it will work on n groupings in an array and calculate different values not found in the array?
Basically I would be given an array of n groupings and freq=2.5 and amp=.23 and use the formula to calculate phase. Note: freq will not always be in the array hence why I'm trying to calculate the phase using a formula.
Ok, I think I finally understand your question:
you are trying to find a set of phase1, phase2,..., phaseN, such that equations like the ones you describe are satisfied
You know how to find y, and you supply values for freq and amp.
In Matlab, such a problem would be solved using, for example fsolve, but let's look at your problem step by step.
For simplicity, let me re-write your equations for phase1, phase2, and phase3. For example, your first equation, the one for phase1, would read
amp1*cos(phase1 + 2 freq1 pi t) + amp2*cos(2 freq2 pi t + phase2) + amp3*cos(2 freq3 pi t + phase3) - y = 0
Note that ampX (X is a placeholder for 1, 2, 3) are given, pi is a constant, t is given via Y (I think), freqX are given.
Hence, you are, in fact, dealing with a non-linear vector equation of the form
F(phase) = 0
where F is a multi-dimensional (vector) function taking a multi-dimensional (vector) input variable phase (comprised of phase1, phase2,..., phaseN). And you are looking for the set of phaseX, where all of the components of your vector function F are zero. N.B. F is a shorthand for your functions. Therefore, the first component of F, called f1, for example, is
f1 = amp1*cos(phase1+...) + amp2*cos(phase2+...) + amp3*cos(phase3+...) - y = 0.
Hence, f1 is a one-dimensional function of phase1, phase2, and phase3.
The technical term for what you are trying to do is find a zero of a non-linear vector function, or find a solution of a non-linear vector function. In Matlab, there are different approaches.
For a one-dimensional function, you can use fzero, which is explained at http://www.mathworks.com/help/matlab/ref/fzero.html?refresh=true
For a multi-dimensional (vector) function as yours, I would look into using fsolve, which is part of Matlab's optimization toolbox (which means I don't know how to do this in Octave). The function fsolve is explained at http://www.mathworks.com/help/optim/ug/fsolve.html
If you know an approximate solution for your phases, you may also look into iterative, local methods.
In particular, I would recommend you look into the Newton's Method, which allows you to find a solution to your system of equations F. Wikipedia has a good explanation of Newton's Method at https://en.wikipedia.org/wiki/Newton%27s_method . Newton iterations are very simple to implement and you should find a lot of resources online. You will have to compute the derivative of your function F with respect to each of your variables phaseX, which is very simple to compute since you're only dealing with cos() functions. For starters, have a look at the one-dimensional Newton iteration method in Matlab at http://www.math.colostate.edu/~gerhard/classes/331/lab/newton.html .
Finally, if you want to dig deeper, I found a textbook on this topic from the society for industrial and applied math: https://www.siam.org/books/textbooks/fr16_book.pdf .
As you can see, this is a very large field; Newton's method should be able to help you out, though.
Good luck!
I have an integration function which does not have indefinite integral expression.
Specifically, the function is f(y)=h(y)+integral(#(x) exp(-x-1/x),0,y) where h(y) is a simple function.
Matlab numerically computes f(y) well, but I want to compute the following function.
g(w)=w*integral(1-f(y).^(1/w),0,inf) where w is a real number in [0,1].
The problem for computing g(w) is handling f(y).^(1/w) numerically.
How can I calculate g(w) with MATLAB? Is it impossible?
Expressions containing e^(-1/x) are generally difficult to compute near x = 0. Actually, I am surprised that Matlab computes f(y) well in the first place. I'd suggest trying to compute g(w)=w*integral(1-f(y).^(1/w),epsilon,inf) for epsilon greater than zero, then gradually decreasing epsilon toward 0 to check if you can get numerical convergence at all. Convergence is certainly not guaranteed!
You can calculate g(w) using the functions you have, but you need to add the (ArrayValued,true) name-value pair.
The option allows you to specify a vector-valued w and allows the nested integral call to receive a vector of y values, which is how integral naturally works.
f = #(y) h(y)+integral(#(x) exp(-x-1/x),0,y,'ArrayValued',true);
g = #(w) w .* integral(1-f(y).^(1./w),0,Inf,'ArrayValued',true);
At least, that works on my R2014b installation.
Note: While h(y) may be simple, if it's integral over the positive real line does not converge, g(w) will more than likely not converge (I don't think I need to qualify that, but I'll hedge my bets).
My project require me to use Matlab to create a symbolic equation with square wave inside.
I tried to write it like this but to no avail:
syms t;
a=square(t);
Input arguments must be 'double'.
What can i do to solve this problem? Thanks in advance for the helps offered.
here are a couple of general options using floor and sign functions:
f=#(A,T,x0,x) A*sign(sin((2*pi*(x-x0))/T));
f=#(A,T,x0,x) A*(-1).^(floor(2*(x-x0)/T));
So for example using the floor function:
syms x
sqr=2*floor(x)-floor(2*x)+1;
ezplot(sqr, [-2, 2])
Here is something to get you started. Recall that we can express a square wave as a Fourier Series expansion. I won't bother you with the details, but you can represent any periodic function as a summation of cosines and sines (à la #RTL). Without going into the derivation, this is the closed-form equation for a square wave of frequency f, with a peak-to-peak amplitude of 2 (i.e. it goes from -1 to 1). Recall that the frequency is the amount of cycles per seconds. Therefore, f = 1 means that we repeat our square wave every second.
Basically, what you have to do is code up the first line of the equation... but how in the world would you do that? Welcome to the world of the Symbolic Math Toolbox. What we will need to do before hand is declare what our frequency is. Let's assume f = 1 for now. With the Symbolic Math Toolbox, you can define what are considered as mathematics variables within MATLAB. After, MATLAB has a whole suite of tools that you can use to evaluate functions that rely on these variables. A good example would be if you want to use this to define a closed-form solution of a function f(x). You can then use diff to differentiate and see what the derivative is. Try it yourself:
syms x;
f = x^4;
df = diff(f);
syms denotes that you are declaring anything coming after the statement to be a mathematical variable. In this case, x is just that. df should now give you 4x^3. Cool eh? In any case, let's get back to our problem at hand. We see that there are in fact two variables in the periodic square function that need to be defined: t and k. Once we do this, we need to create our function that is inside the summation first. We can do this by:
syms t k;
f = 1; %//Define frequency here
funcSum = (sin(2*pi*(2*k - 1)*f*t) / (2*k - 1));
That settles that problem... now how do we encapsulate this into an infinite sum!? The sum command in MATLAB assumes that we have a finite array to sum over. If you want to symbolically sum over a function, we must use the symsum function. We usually call it like this:
funcOut = symsum(func, v, start, finish);
func is the function we wish to sum over. v is the summation variable that we wish to use to index in the sum. In our case, that's k. start is the beginning of the sum, which is 1 in our case, and finish is where we wish to finish up our summation. In our case, that's infinity, and so MATLAB has a special keyword called Inf to denote that. Therefore:
xsquare = (4/pi) * symsum(funcSum, k, 1, Inf);
xquare now contains your representation of a square wave defined in terms of the Symbolic Math Toolbox. Now, if you want to plot your square wave and see if we have this right. We can do the following. Let's go between -3 <= t <= 3. As such, you would do something like this:
tVector = -3 : 0.01 : 3; %// Choose a step size of 0.01
yout = subs(xsquare, t, tVector);
You will notice though that there will be some values that are NaN. The reason why is because right at a multiple of the period (T = 1, 2, 3, ...), the behaviour is undefined as the derivative right at these points is undefined. As such, we can fill this in using either 1 or -1. Let's just choose 1 for now. Also, because the Fourier Series is generally a complex-valued function, and the square-wave is purely real, the output of this function will actually give you a complex-valued vector. As such, simply chop off the complex parts to get the real parts only:
yout = real(double(yout)); %// To cast back to double.
yout(isnan(yout)) = 1;
plot(tVector, yout);
You'll get something like:
You could also do this the ezplot way by doing: ezplot(xsquare). However, you'll see that at the points where the wave repeats itself, we get NaN values and so there is a disconnect between the high peak and low peak.
Note:
Natan's solution is much more elegant. I was still writing this post by the time he put something up. Either way, I wanted to give a more signal processing perspective to how to do this. Go Fourier!
A Fourier series for the square wave of unit amplitude is:
alpha + 2/Pi*sum(sin( n * Pi*alpha)/n*cos(n*theta),n=1..infinity)
Here is a handy trick:
cos(n*theta) = Re( exp( I * n * theta))
and
1/n*exp(I*n*theta) = I*anti-derivative(exp(I*n*theta),theta)
Put it all together: pull the anti-derivative ( or integral ) operator out of the sum, and you get a geometric series. Then integrate and finally take the real part.
Result:
squarewave=
alpha+ 1/Pi*Re(I*ln((1-exp(I*(theta+Pi*alpha)))/(1-exp(I*(theta-Pi*alpha)))))
I tried it in MAPLE and it works great! (probably not very practical though)
I'm trying to do some parameter estimation and want to choose parameter estimates that minimize the square error in a predicted equation over about 30 variables. If the equation were linear, I would just compute the 30 partial derivatives, set them all to zero, and use a linear-equation solver. But unfortunately the equation is nonlinear and so are its derivatives.
If the equation were over a single variable, I would just use Newton's method (also known as Newton-Raphson). The Web is rich in examples and code to implement Newton's method for functions of a single variable.
Given that I have about 30 variables, how can I program a numeric solution to this problem using Newton's method? I have the equation in closed form and can compute the first and second derivatives, but I don't know quite how to proceed from there. I have found a large number of treatments on the web, but they quickly get into heavy matrix notation. I've found something moderately helpful on Wikipedia, but I'm having trouble translating it into code.
Where I'm worried about breaking down is in the matrix algebra and matrix inversions. I can invert a matrix with a linear-equation solver but I'm worried about getting the right rows and columns, avoiding transposition errors, and so on.
To be quite concrete:
I want to work with tables mapping variables to their values. I can write a function of such a table that returns the square error given such a table as argument. I can also create functions that return a partial derivative with respect to any given variable.
I have a reasonable starting estimate for the values in the table, so I'm not worried about convergence.
I'm not sure how to write the loop that uses an estimate (table of value for each variable), the function, and a table of partial-derivative functions to produce a new estimate.
That last is what I'd like help with. Any direct help or pointers to good sources will be warmly appreciated.
Edit: Since I have the first and second derivatives in closed form, I would like to take advantage of them and avoid more slowly converging methods like simplex searches.
The Numerical Recipes link was most helpful. I wound up symbolically differentiating my error estimate to produce 30 partial derivatives, then used Newton's method to set them all to zero. Here are the highlights of the code:
__doc.findzero = [[function(functions, partials, point, [epsilon, steps]) returns table, boolean
Where
point is a table mapping variable names to real numbers
(a point in N-dimensional space)
functions is a list of functions, each of which takes a table like
point as an argument
partials is a list of tables; partials[i].x is the partial derivative
of functions[i] with respect to 'x'
epilson is a number that says how close to zero we're trying to get
steps is max number of steps to take (defaults to infinity)
result is a table like 'point', boolean that says 'converged'
]]
-- See Numerical Recipes in C, Section 9.6 [http://www.nrbook.com/a/bookcpdf.php]
function findzero(functions, partials, point, epsilon, steps)
epsilon = epsilon or 1.0e-6
steps = steps or 1/0
assert(#functions > 0)
assert(table.numpairs(partials[1]) == #functions,
'number of functions not equal to number of variables')
local equations = { }
repeat
if Linf(functions, point) <= epsilon then
return point, true
end
for i = 1, #functions do
local F = functions[i](point)
local zero = F
for x, partial in pairs(partials[i]) do
zero = zero + lineq.var(x) * partial(point)
end
equations[i] = lineq.eqn(zero, 0)
end
local delta = table.map(lineq.tonumber, lineq.solve(equations, {}).answers)
point = table.map(function(v, x) return v + delta[x] end, point)
steps = steps - 1
until steps <= 0
return point, false
end
function Linf(functions, point)
-- distance using L-infinity norm
assert(#functions > 0)
local max = 0
for i = 1, #functions do
local z = functions[i](point)
max = math.max(max, math.abs(z))
end
return max
end
You might be able to find what you need at the Numerical Recipes in C web page. There is a free version available online. Here (PDF) is the chapter containing the Newton-Raphson method implemented in C. You may also want to look at what is available at Netlib (LINPack, et. al.).
As an alternative to using Newton's method the Simplex Method of Nelder-Mead is ideally suited to this problem and referenced in Numerical Recpies in C.
Rob
You are asking for a function minimization algorithm. There are two main classes: local and global. Your problem is least squares so both local and global minimization algorithms should converge to the same unique solution. Local minimization is far more efficient than global so select that.
There are many local minimization algorithms but one particularly well suited to least squares problems is Levenberg-Marquardt. If you don't have such a solver to hand (e.g. from MINPACK) then you can probably get away with Newton's method:
x <- x - (hessian x)^-1 * grad x
where you compute the inverse matrix multiplied by a vector using a linear solver.
Since you already have the partial derivatives, how about a general gradient-descent approach?
Maybe you think you have a good-enough solution, but for me, the easiest way to think about this is to understand it in the 1-variable case first, and then extend it to the matrix case.
In the 1-variable case, if you divide the first derivative by the second derivative, you get the (negative) step size to your next trial point, e.g. -V/A.
In the N-variable case, the first derivative is a vector and the second derivative is a matrix (the Hessian). You multiply the derivative vector by the inverse of the second derivative, and the result is the negative step-vector to your next trial point, e.g. -V*(1/A)
I assume you can get the 2nd-derivative Hessian matrix. You will need a routine to invert it. There are plenty of these around in various linear algebra packages, and they are quite fast.
(For readers who are not familiar with this idea, suppose the two variables are x and y, and the surface is v(x,y). Then the first derivative is the vector:
V = [ dv/dx, dv/dy ]
and the second derivative is the matrix:
A = [dV/dx]
[dV/dy]
or:
A = [ d(dv/dx)/dx, d(dv/dy)/dx]
[ d(dv/dx)/dy, d(dv/dy)/dy]
or:
A = [d^2v/dx^2, d^2v/dydx]
[d^2v/dxdy, d^2v/dy^2]
which is symmetric.)
If the surface is parabolic (constant 2nd derivative) it will get to the answer in 1 step. On the other hand, if the 2nd derivative is very not-constant, you could encounter oscillation. Cutting each step in half (or some fraction) should make it stable.
If N == 1, you'll see that it does the same thing as in the 1-variable case.
Good luck.
Added: You wanted code:
double X[N];
// Set X to initial estimate
while(!done){
double V[N]; // 1st derivative "velocity" vector
double A[N*N]; // 2nd derivative "acceleration" matrix
double A1[N*N]; // inverse of A
double S[N]; // step vector
CalculateFirstDerivative(V, X);
CalculateSecondDerivative(A, X);
// A1 = 1/A
GetMatrixInverse(A, A1);
// S = V*(1/A)
VectorTimesMatrix(V, A1, S);
// if S is small enough, stop
// X -= S
VectorMinusVector(X, S, X);
}
My opinion is to use a stochastic optimizer, e.g., a Particle Swarm method.