Logarithmic LFO control of frequency - web-audio-api

If I understand correctly, and it appears this way audibly, connecting an LFO to osc.frequency with osc.frequency being ex, 440Hz, and setting LFO gain to the same frequency:
The frequency oscillates between 440Hz and 0Hz. That is, the LFO appears to control the frequency linearly.
What I'm looking for is an obvious method, if one exists, to oscillate frequency defined by, for example, the number of octaves. That is, 440Hz should oscillate up +440 and down -220, rather than +440 to -440. Octave up/down instead of frequency up/down.
It doesn't appear that something such as adding a DC component to the oscillator would be an adequate solution. Although the basic requirement of octave up/octave down may be met, the transition curve of a sinusoid would nevertheless be improper.
The most suitable solution that comes to mind is to use an envelope rather than an oscillator for frequency LFO. However I'm keen to know if there's something obvious in the specification that would innately produce this behavior with oscillators.
Thanks!

Use the "detune" AudioParam rather than frequency.

Related

3rd-order rate limiter in Simulink? How to generate smooth triggered signals?

First for those, who are not familiar with Simulink, there is a imaginable outside-Simulink partial solution:
I need to create a vector satisfying the following conditions:
known initial value a1
known final value a2
it has a pre-defined step size, but the length is not pre-determined
the first derivative over the whole range is limited to v_max resp. -v_max
the second derivative over the whole range is limited to a_max resp. -a_max
the third derivative over the whole range is limited to j_max resp. -j_max
at the first and the final point all derivatives are zero.
Before you ask "what have you tried so far", I just had the idea to solve it outside Simulink and I tried the whole stuff below ;)
But maybe you guys have a good idea, while I keep working on my own solution.
I'd like to generate smooth ramp signals (3rd derivative limited) based on a trigger signal in Simulink.
To get a triggered step I created a triggered subsystem propagating the trigger output. It looks like that:
But I actually don't want a step, I need a very smooth ramp with limited derivatives up to the 3rd order. The math behind is:
displacement: x
speed: v = x'
acceleration: a = v' = x''
jerk: j = a' = v'' = x'''
(If this looks familiar to you, I once had a very similar question. I thought about a bounty on it, but after the necessary edit of the question both answers would have been invalid)
As there are just rate limiters of 1st order, I used two derivates and a double integration to resolve my problem. But there is a mayor drawback, I can not ignore anymore. For the sake of illustration I chose a relatively big step size of 0.1.
The complete minimal example (Fixed Step, stepsize: 0.1, ode4): Download here
It can be seen, that the signal not even reaches the intended step height of 10 and furthermore is not constant at the end.
Over the development process of my whole model, this approach was satisfactory enough for small step sizes. But I reached the point where I really need the smooth ramp as intended. That means I need a finally constant signal at exactly the value, specified by the step height gain.
I already spent days to resolve the problem, and hope to fine some help here now.
Some of my ideas:
dynamically increase the step height over the actual desired value and saturate the final output. If the rate limits,step height and the simulation step size wouldn't be flexible one could probably find a satisfying solution. But as everything has to be flexible, there are too much cases where the acceleration and jerk limit is violated.
I tried to use the Matlab function block and write my own 3rd order rate limiter. Though it seems possible for me for the trigger moment, I have no solution how to smooth the "deceleration" at the end of the ramp. Also I'd need C-compilers, which would make it hard to use my model on other systems without problems. (At least I think so.)
The solver can not be changed siginificantly (either ode3 or ode4) and a fixed step size is mandatory (0.00001 to 0.01).
Currently used, not really useful approach:
For a dynamic amplification of 1.07 I get the following output (all values normalised on their limits):
Though the displacement looks nice, the violation of the acceleration limit is very harmful.
For a dynamic amplification of 1.05 I get the following output (all values normalised on their limits):
The acceleration stays in its boundaries, but the displacement does not reach the intended value. (not really clear in the picture) The jerk is still to big. (I could live with that, but it's not nice)
So it appears to me that a inside-Simulink solutions is far from reality. Any ideas how to create a well-behaving custom function block?
Simulation step size, step height, and the rate limits are known before the simulation starts. (But I have a lot of these triggered smooth ramps in a row, it should feed a event-discrete control). So I could imagine to create the whole smooth ramp outside simulink and save it as a timeseries object and append it on the current signal when the trigger is activated.
The problems you see are because the difference is not conditioned very well.
Taking the difference amplifies the numerical that exists in your simulation.
Also the jerk will always be large if you try to apply an actual step.
I guess for your approach it would be better to work the other way around:
i.e. make a jerk, acceleration and velocity with which your step is achieved.
I think your looking for something like the ref3 block:
http://www.dct.tue.nl/home_of_ref3.htm
Note the disclaimer on the site and that it is a little cumbersome to use.
An easy (yet to be improved) way is to use a rate limiter and then a state space model with a filter. From the filter you get the velocity, which in turn you can apply a rate limiter to. You continue with rate-limiter and filters until you have the desired curve.
Otherwise you can come up with numerical rate-limiters of higher order using ie runge kutta formulas or finite differences. However it was pointed out, that they may suffer from bad conditioning.
What I usually do is to use one rate limiter and a filter of 3rd Order and just tune the time constant (1 tripple pole), such that my needs are met. This works well, esp
Integrator chains of length > 1 are unstable!
There is a huge field of research dealing with trajectory planning. The easiest way might be to use FIR filters (Biagotti et al) or to implement an online trajectory planner (Ezair et al 2014 / Knierim et al 2012).

How to smooth rectangular signal with high order rate-limiter in Simulink?

Imagine I have a rectangular reference value for the position/displacement x and I need to smooth it.
The math for translatoric movements is quite simple:
speed: v = x'
acceleration: a = v' = x''
jerk. j = a' = v'' = x'''
I need to limit all these values. So I thought about using rate limiters in Simulink:
This approach works perfect for ramp signals, as you can see in the following output:
BUT, my reference signals for x are no ramps, they are rectangles/steps. Hence the rate limiters are not working, because the derivatives they get to limit are already infinite and Simulink throws an error. How can I resolve this problem? Is there actually a more elegant way to implement the high order rate-limiters? I guess this approach could be unstable in some cases.
continue reading: related question
Even though it seems absurd, the following approach is working: integration and instant derivation does the trick:
leading to:
More elegant, faster and simpler solutions for the whole smoothing problem are highly appreciated!
It's generally not a good idea to differentiate signals in Simulink because of numerical issues, I would advise to start with the higher order derivatives (e.g. acceleration) and integrate, much more robust numerically. This is what the doc about the derivative block says:
The Derivative block output might be very sensitive to the dynamics of
the entire model. The accuracy of the output signal depends on the
size of the time steps taken in the simulation. Smaller steps allow a
smoother and more accurate output curve from this block. However,
unlike with blocks that have continuous states, the solver does not
take smaller steps when the input to this block changes rapidly.
Depending on the dynamics of the driving signal and model, the output
signal of this block might contain unexpected fluctuations. These
fluctuations are primarily due to the driving signal output and solver
step size.
Because of these sensitivities, structure your models to use
integrators (such as Integrator blocks) instead of Derivative blocks.
Integrator blocks have states that allow solvers to adjust step size
and improve accuracy of the simulation. See Circuit Model for an
example of choosing the best-form mathematical model to avoid using
Derivative blocks in your models.
See also Best-Form Mathematical Models for more details.
I was trying to do something similar. I was looking for a "Smooth Ramp". Here is what I found:
A simpler approach is to combine ramp with a second order lag. Then the signal approachs s-shape. And your derivatives will exist and be smooth as well. Only thing to remember is that the 2nd or lag must be critically damped.
Y(s) = H(s)*X(s) where H(s) = K*wo^2/(s^2 + 2*zeta*wo*s + wo^2). Here you define zeta = 1.0. Then the s-shape is retained for any K and wo value. Note that X(s) has already been hit by a ramp. In matlab or any other tools, linear ramp and 2nd lag are standard blocks.
Good luck!
I think the 'Transfer Fcn' block is what you're looking for.
If you leave the equation in the default form 1/(s+1) you have a low-pass filter which can be tuned to what you need by changing the numerator and denominator coefficients.

Trying to filter (tons of) noise from accelerometers and gyroscopes

My project:
I'm developing a slot car with 3-axis accelerometer and gyroscope, trying to estimate the car pose (x, y, z, yaw, pitch) but I have a big problem with my vibration noise (while the car is running, the gears induce vibration and the track also gets it worse) because the noise takes values between ±4[g] (where g = 9.81 [m/s^2]) for the accelerometers, for example.
I know (because I observe it), the noise is correlated for all of my sensors
In my first attempt, I tried to work it out with a Kalman filter, but it didn't work because values of my state vectors had a really big noise.
EDIT2: In my second attempt I tried a low pass filter before the Kalman filter, but it only slowed down my system and didn't filter the low components of the noise. At this point I realized this noise might be composed of low and high frecuency components.
I was learning about adaptive filters (LMS and RLS) but I realized I don't have a noise signal and if I use one accelerometer signal to filter other axis' accelerometer, I don't get absolute values, so It doesn't work.
EDIT: I'm having problems trying to find some example code for adaptive filters. If anyone knows about something similar, I will be very thankful.
Here is my question:
Does anyone know about a filter or have any idea about how I could fix it and filter my signals correctly?
Thank you so much in advance,
XNor
PD: I apologize for any mistake I could have, english is not my mother tongue
The first thing i would do, would be to run a DFT on the sensor signal and see if there is actually a high and low frequency component of your accelerometer signals.
With a DFT you should be able to determine an optimum cutoff frequency of your lowpass/bandpass filter.
If you have a constant component on the Z axis, there is a chance that you haven't filtered out gravity. Note that if there is a significant pitch or roll this constant can be seen on your X and Y axes as well
Generally pose estimation with an accelerometer is not a good idea as you need to integrate the acceleration signals twice to get a pose. If the signal is noisy you are going to be in trouble already after a couple of seconds if the noise is not 100% evenly distributed between + and -.
If we assume that there is no noise coming from your gears, even the conversion accuracy of the Accelerometer might start to mess up your pose after a couple of minutes.
I would definately use a second sensor, eg a compass/encoder in combination with your mathematical model and combine all your sensor data in a kalmann filter(Sensor fusion).
You might also be able to derive a black box model of your noise by assuming that it is correlated with your motors RPM. (Box-jenkins/Arma/Arima).
I had similar problems with noise with low and high frequencies and I managed to decently remove it without removing good signal too by using an universal microphone shock mount. It does a good job with gyroscope too especially if you find one which fits it (or you can put it in a small case then mount it)
It basically uses elastic strings to remove shocks and vibration.
Have you tried a simple low-pass filter on the data? I'd guess that the vibration frequency is much higher than the frequencies in normal car acceleration data. At least in normal driving. Crashes might be another story...

Audio processing with fft iphone app [duplicate]

I'm trying to write a simple tuner (no, not to make yet another tuner app), and am looking at the AurioTouch sample source (has anyone tried to comment this code??).
My worry is that aurioTouch doesn't seem to actually work very well when looking at the frequency domain graph. I play a single note on an instrument and I don't see a nicely ordered, small, set of frequencies with one string peak at the appropriate frequency of the note.
Has anyone used aurioTouch enough to know whether the underlying code is functional or whether it is just a crude sample?
Other options I have are to use FFTW or KISS FFT. Anyone have any experience with those?
Thanks.
You're expecting the wrong thing!!
Not the library's fault
Whether the library produces it properly or not, you're looking for a pattern that rarely actually exists in real-life sounds. Only a perfect sine wave, electronically generated, will cause an even partway discrete appearing 'spike' in the freq. graph. If you don't believe it try firing up a 'spectrum analyzer' visualization in winamp or media player. It's not so much the PC's fault.
Real sound waves are complicated animals
Picture a sawtooth or sqaure wave in your mind's eye. those sharp turnaround - corners or points on the wave, look like tons of higher harmonics to the FFT or even a real fourier. And if you've ever seen a real 'sqaure wave/sawtooth' on a scope, or even a 'sine wave' produced by an instrument that is supposed to produce a sinewave, take a look at all the sharp nooks and crannies in just ONE note (if you don't have a scope just zoom way in on the wave in audacity - the more you zoom, the higher notes you're looking at). Yep, those deviations all count as frequencies.
It's hard to tell the difference between one note and a whole orchestra sometimes in a spectrum analysis.
But I hear single notes!
So how does the ear do it? It considers the entire waveform. Then your lower brain lies to your upper brain about what the input is: one note, not a mess of overtones.
You can't do it as fully, but you can approximate it via 'training.'
Approximation: building some smarts
PLAY the note on the instrument and 'save' the frequency graph. Do this for notes in several frequency ranges, or better yet all notes.
Then interpolate the notes to fill in gaps (by 1/2 or 1/4 steps) by multiplying the saved graphs for that instrument by 2^(1/12) (or 1/24 for 1/4 steps, etc).
Figure out how to store them in a quickly-searchable data structure like a BST or trie. Only it would have to return a 'how close is this' score. It would have to identify the match via proportions of frequencies as well, in case it came in different volumes.
Using the smarts
Next time you're looking for a note from that instrument, just take the 'heard' freq graph and find it in that data structure. You can record several instruments that make different waveforms and search for them too. If there are background sounds or multiple notes, take the closest match. Then if you want to identify other notes, 'subtract' the found frequency pattern from the sampled one, and rinse, lather repeat.
It won't work by your voice...
If you ever tried to tune yourself by singing into a guitar tuner, you'll know that tuners arent that clever. Of course some instruments (voice esp) really float around the pitch and generate an ever-evolving waveform (even without somebody singing).
What are you trying to accomplish?
You would not have to totally get this fancy for a 'simple' tuner app, but if you're not making just another tuner app them I'm guessing you actually want to identify notes (e.g., maybe you want to autogenerate midi files from songs on the radio ;-)
Good luck. I hope you find a library that does all this junk instead of having to roll your own.
Edit 2017
Note this webpage: http://www.feilding.net/sfuad/musi3012-01/html/lectures/015_instruments_II.htm
Well down the page, there are spectrum analyses of various organ pipes. There are many, many overtones. These are possible to detect - with enough work - if you 'train' your app with them first (just like telling a kid, 'this is what a clarinet sounds like...')
aurioTouch looks weird because the frequency axis is on a linear scale. It's very difficult to interpret FFT output when the x-axis is anything other than a logarithmic scale (traditionally log2).
If you can't use aurioTouch's integer-FFT, check out my library:
http://github.com/alexbw/iPhoneFFT
It uses double-precision, has support for multiple window types, and implements Welch's method (which should give you more stable spectra when viewed over time).
#zaph, the FFT does compute a true Discrete Fourier Transform. It is simply an efficient algorithm that takes advantage of the bit-wise representation of digital signals.
FFTs use frequency bins and the bin frequency width is based on the FFT parameters. To find a frequency you will need to record it sampled at a rate at least twice the highest frequency present in the sample. Then find the time between the cycles. If it is not a pure frequency this will of course be harder.
I am using Ooura FFT to compute the FFT of acceleromter data. I do not always obtain the correct spectrum. For some reason, Ooura FFT produces completely wrong results with spectral magnitudes of the order 10^200 across all frequencies.

AurioTouch & FFT for an instrument tuner

I'm trying to write a simple tuner (no, not to make yet another tuner app), and am looking at the AurioTouch sample source (has anyone tried to comment this code??).
My worry is that aurioTouch doesn't seem to actually work very well when looking at the frequency domain graph. I play a single note on an instrument and I don't see a nicely ordered, small, set of frequencies with one string peak at the appropriate frequency of the note.
Has anyone used aurioTouch enough to know whether the underlying code is functional or whether it is just a crude sample?
Other options I have are to use FFTW or KISS FFT. Anyone have any experience with those?
Thanks.
You're expecting the wrong thing!!
Not the library's fault
Whether the library produces it properly or not, you're looking for a pattern that rarely actually exists in real-life sounds. Only a perfect sine wave, electronically generated, will cause an even partway discrete appearing 'spike' in the freq. graph. If you don't believe it try firing up a 'spectrum analyzer' visualization in winamp or media player. It's not so much the PC's fault.
Real sound waves are complicated animals
Picture a sawtooth or sqaure wave in your mind's eye. those sharp turnaround - corners or points on the wave, look like tons of higher harmonics to the FFT or even a real fourier. And if you've ever seen a real 'sqaure wave/sawtooth' on a scope, or even a 'sine wave' produced by an instrument that is supposed to produce a sinewave, take a look at all the sharp nooks and crannies in just ONE note (if you don't have a scope just zoom way in on the wave in audacity - the more you zoom, the higher notes you're looking at). Yep, those deviations all count as frequencies.
It's hard to tell the difference between one note and a whole orchestra sometimes in a spectrum analysis.
But I hear single notes!
So how does the ear do it? It considers the entire waveform. Then your lower brain lies to your upper brain about what the input is: one note, not a mess of overtones.
You can't do it as fully, but you can approximate it via 'training.'
Approximation: building some smarts
PLAY the note on the instrument and 'save' the frequency graph. Do this for notes in several frequency ranges, or better yet all notes.
Then interpolate the notes to fill in gaps (by 1/2 or 1/4 steps) by multiplying the saved graphs for that instrument by 2^(1/12) (or 1/24 for 1/4 steps, etc).
Figure out how to store them in a quickly-searchable data structure like a BST or trie. Only it would have to return a 'how close is this' score. It would have to identify the match via proportions of frequencies as well, in case it came in different volumes.
Using the smarts
Next time you're looking for a note from that instrument, just take the 'heard' freq graph and find it in that data structure. You can record several instruments that make different waveforms and search for them too. If there are background sounds or multiple notes, take the closest match. Then if you want to identify other notes, 'subtract' the found frequency pattern from the sampled one, and rinse, lather repeat.
It won't work by your voice...
If you ever tried to tune yourself by singing into a guitar tuner, you'll know that tuners arent that clever. Of course some instruments (voice esp) really float around the pitch and generate an ever-evolving waveform (even without somebody singing).
What are you trying to accomplish?
You would not have to totally get this fancy for a 'simple' tuner app, but if you're not making just another tuner app them I'm guessing you actually want to identify notes (e.g., maybe you want to autogenerate midi files from songs on the radio ;-)
Good luck. I hope you find a library that does all this junk instead of having to roll your own.
Edit 2017
Note this webpage: http://www.feilding.net/sfuad/musi3012-01/html/lectures/015_instruments_II.htm
Well down the page, there are spectrum analyses of various organ pipes. There are many, many overtones. These are possible to detect - with enough work - if you 'train' your app with them first (just like telling a kid, 'this is what a clarinet sounds like...')
aurioTouch looks weird because the frequency axis is on a linear scale. It's very difficult to interpret FFT output when the x-axis is anything other than a logarithmic scale (traditionally log2).
If you can't use aurioTouch's integer-FFT, check out my library:
http://github.com/alexbw/iPhoneFFT
It uses double-precision, has support for multiple window types, and implements Welch's method (which should give you more stable spectra when viewed over time).
#zaph, the FFT does compute a true Discrete Fourier Transform. It is simply an efficient algorithm that takes advantage of the bit-wise representation of digital signals.
FFTs use frequency bins and the bin frequency width is based on the FFT parameters. To find a frequency you will need to record it sampled at a rate at least twice the highest frequency present in the sample. Then find the time between the cycles. If it is not a pure frequency this will of course be harder.
I am using Ooura FFT to compute the FFT of acceleromter data. I do not always obtain the correct spectrum. For some reason, Ooura FFT produces completely wrong results with spectral magnitudes of the order 10^200 across all frequencies.