MongoDB multiple compound indexing will affect performance? - mongodb

Is creating multiple compound indexes for serving various types of queries is better?
or
Is it better to
use a single compound index in a way that supports multiple queries(which is hard to analysis and construct, since there are many number of queries).
My basic question is "Does creating multiple compound indexes will slow down read/write operations?"
Please suggest me a solution.

There isn't any answer that fits all cases, but in general adding the right indexes will give you better performance. You will have less reads when accessing data. Calculating the index will cost you some performance, however if they are correct and used your db will perform better afterwards. Start with monitoring: mongodb monitoring docs

Indices will slow down writes but speed up reads. A high read to write ratio warrants one or more indices on commonly fetched fields (keys). For example our current system sees 25 writes to 20,000 reads (tps) so indices are beneficial to counter the wide margin. That being said, be mindful of retaining the mongo write lock as short as possible.
MongoDB uses a readers-writer 1 lock that allows concurrent reads
access to a database but gives exclusive access to a single write
operation. mongodb docs

Related

MongoDB Index - Performance considerations on collections with high write-to-read ratio

I have a MongoDB Collection with around 100k inserts every day. Each document consumes around 1 MB space and has a lot of elements.
The Data is mainly stored for analytics purpose and read a couple times each day. I want to speed up the queries by adding indexes to a few fields which are usually used for filtering but stumpled accross this statement in the mongodb documentation:
Adding an index has some negative performance impact for write operations. For collections with high write-to-read ratio, indexes are expensive since each insert must also update any indexes.
source
I was wondering if this should bother me with 100k inserts vs. a couple of big read operations and if this would add a lot of overhead to the insert operations?
If yes, should i separete reads from writes in in separate collections and duplicate the data or are there any other solutions for this?

Is it worth splitting one collection into many in MongoDB to speed up querying records?

I have a query for a collection. I am filtering by one field. I thought, I can speed up query, if based on this field I make many separate collections, which collection's name would contain that field name, in previous approach I filtered with. Practically I could remove filter component in a query, because I need only pick the right collection and return documents in it as response. But in this way ducoments will be stored redundantly, a document earlier was stored only once, now document might be stored in more collections. Is this approach worth to follow? I use Heroku as cloud provider. By increasing of the number of dynos, it is easy to serve more user request. As I know read operations in MongoDB are highly mutual, parallel executed. Locking occure on document level. Is it possible gain any advantage by increasing redundancy? Of course index exists for that field.
If it's still within the same server, I believe there may be little parallelization gain (from the database side) in doing it this way, because for a single server, it matters little how your document is logically structured.
All the server cares about is how many collection and indexes you have, since it stores those collections and associated indexes in a number of files. It will need to load these files as the collection is accessed.
What could potentially be an issue is if you have a massive number of collections as a result, where you could hit the open file limit. Note that the open file limit is also shared with connections, so with a lot of collections, you're indirectly reducing the number of possible connections.
For illustration, let's say you have a big collection with e.g. 5 indexes on them. The WiredTiger storage engine stores the collection as:
1 file containing the collection data
1 file containing the _id index
5 files containing the 5 secondary indexes
Total = 7 files.
Now you split this one collection across e.g. 100 collections. Assuming the collections also requires 5 secondary indexes, in total they will need 700 files in WiredTiger (vs. of the original 7). This may or may not be desirable from your ops point of view.
If you require more parallelization if you're hitting some ops limit, then sharding is the recommended method. Sharding the busy collection across many different shards (servers) will immediately give you better parallelization vs. a single server/replica set, given a properly chosen shard key designed to maximize parallelization.
Having said that, sharding also requires more infrastructure and may complicate your backup/restore process. It will also require considerable planning and testing to ensure your design is optimal for your use case, and will scale well into the future.

Best way to query entire MongoDB collection for ETL

We want to query an entire live production MongoDB collection (v2.6, around 500GB of data on around 70M documents).
We're wondering what's the best approach for this:
A single query with no filtering to open a cursor and get documents in batches of 5/6k
Iterate with pagination, using a logic of find().limit(5000).skip(currentIteration * 5000)
We're unsure what's the best practice and will yield the best results with minimum impact on performance.
I would go with 1. & 2. mixed if possible: Iterate over your huge dataset in pages but access those pages by querying instead of skipping over them as this may be costly as also pointed out by the docs.
The cursor.skip() method is often expensive because it requires the
server to walk from the beginning of the collection or index to get
the offset or skip position before beginning to return results. As the
offset (e.g. pageNumber above) increases, cursor.skip() will become
slower and more CPU intensive. With larger collections, cursor.skip()
may become IO bound.
So if possible build your pages on an indexed field and process those batches of data with an according query range.
The brutal way
Generally speaking, most drivers load batches of documents anyway. So your languages equivalent of
var docs = db.yourcoll.find()
docs.forEach(
function(doc){
//whatever
}
)
will actually just create a cursor initially, and will then, when the current batch is close to exhaustion, load a new batch transparently. So doing this pagination manually while planning to access every document in the collection will have little to no advantage, but hold the overhead of multiple queries.
As for ETL, manually iterating over the documents to modify and then store them in a new instance does under most circumstances not seem reasonable to me, as you basically reinvent the wheel.
Alternate approach
Generally speaking, there is no one-size-fits all "best" way. The best way is the one that best fits your functional and non-functional requirements.
When doing ETL from MongoDB to MongoDB, I usually proceed as follows:
ET…
Unless you have very complicated transformations, MongoDB's aggregation framework is a surprisingly capable ETL tool. I use it regularly for that purpose and have yet to find a problem not solvable with the aggregation framework for in-MongoDB ETL. Given the fact that in general each document is processed one by one, the impact on your production environment should be minimal, if noticeable at all. After you did your transformation, simply use the $out stage to save the results in a new collection.
Even collection spanning transformations can be achieved, using the $lookup stage.
…L
After you did the extract and transform on the old instance, for loading the data to the new MongoDB instance, you have several possibilities:
Create a temporary replica set, consisting of the old instance, the new instance and an arbiter. Make sure your old instance becomes primary, do the ET part, have the primary step down so your new instance becomes primary and remove the old instance and the arbiter from the replica set. The advantage is that you facilitate MongoDB's replication mechanics to get the data from your old instance to your new instance, without the need to worry about partially executed transfers and such. And you can use it the other way around: Transfer the data first, make the new instance the primary, remove the other members from the replica set perform your transformations and remove the "old" data, then.
Use db.CloneCollection(). The advantage here is that you only transfer the collections you need, at the expense of more manual work.
Use db.cloneDatabase() to copy over the entire DB. Unless you have multiple databases on the original instance, this method has little to now advantage over the replica set method.
As written, without knowing your exact use cases, transformations and constraints, it is hard to tell which approach makes the most sense for you.
MongoDB 3.4 support Parallel Collection Scan. I never tried this myself yet. But looks interesting to me.
This will not work on sharded clusters. If we have parallel processing setup this will speed up the scanning for sure.
Please see the documentation here: https://docs.mongodb.com/manual/reference/command/parallelCollectionScan/

120 mongodb collections vs single collection - which one is more efficient?

I'm new to mongodb and I'm facing a dilemma regarding my DB Schema design:
Should I create one single collection or put my data into several collections (we could call these categories I suppose).
Now I know many such questions have been asked, but I believe my case is different for 2 reasons:
If I go for many collections, I'll have to create about 120 and that's it. This won't grow in the future.
I know I'll never need to query or insert into multiple collections. I will always have to query only one, since a document in collection X is not related to any document stored in the other collections. Documents may hold references to other parts of the DB though (like userId etc).
So my question is: could the 120 collections improve query performance? Is this a useful optimization in my case?
Or should I just go for single collection + sharding?
Each collection is expected hold millions of documents. If use only one, it will store billions of docs.
Thanks in advance!
------- Edit:
Thanks for the great answers.
In fact the 120 collections is only a self made limit, it's not really optimal:
The data in the collections is related to web publishers. There could be millions of these (any web site can join).
I guess the ideal situation would be if I could create a collection for each publisher (to hold their data only). But obviously, this is not possible due to mongo limitations.
So I came up with the idea of a fixed number of collections to at least distribute the data somehow. Like: collection "A_XX" would hold XX Platform related data for publishers whose names start with "A".. etc. We'll only support a few of these platforms, so 120 collections should be more than enough.
On another website someone suggested using many databases instead of many collections. But this means overhead and then I would have to use / manage many different connections.
What do you think about this? Is there a better solution?
Sorry for not being specific enough in my original question.
Thanks in advance
Single Sharded Collection
The edited version of the question makes the actual requirement clearer: you have a collection that can potentially grow very large and you want an approach to partition the data. The artificial collection limit is your own planned partitioning scheme.
In that case, I think you would be best off using a single collection and taking advantage of MongoDB's auto-sharding feature to distribute the data and workload to multiple servers as required. Multiple collections is still a valid approach, but unnecessarily complicates your application code & deployment versus leveraging core MongoDB features. Assuming you choose a good shard key, your data will be automatically balanced across your shards.
You can do not have to shard immediately; you can defer the decision until you see your workload actually requiring more write scale (but knowing the option is there when you need it). You have other options before deciding to shard as well, such as upgrading your servers (disks and memory in particular) to better support your workload. Conversely, you don't want to wait until your system is crushed by workload before sharding so you definitely need to monitor the growth. I would suggest using the free MongoDB Monitoring Service (MMS) provided by 10gen.
On another website someone suggested using many databases instead of many collections. But this means overhead and then I would have to use / manage many different connections.
Multiple databases will add significantly more administrative overhead, and would likely be overkill and possibly detrimental for your use case. Storage is allocated at the database level, so 120 databases would be consuming much more space than a single database with 120 collections.
Fixed number of collections (original answer)
If you can plan for a fixed number of collections (120 as per your original question description), I think it makes more sense to take this approach rather than using a monolithic collection.
NOTE: the design considerations below still apply, but since the question was updated to clarify that multiple collections are an attempted partitioning scheme, sharding a single collection would be a much more straightforward approach.
The motivations for using separate collections would be:
Your documents for a single large collection will likely have to include some indication of the collection subtype, which may need to be added to multiple indexes and could significantly increase index sizes. With separate collections the subtype is already implicit in the collection namespace.
Sharding is enabled at the collection level. A single large collection only gives you an "all or nothing" approach, whereas individual collections allow you to control which subset(s) of data need to be sharded and choose more appropriate shard keys.
You can use the compact to command to defragment individual collections. Note: compact is a blocking operation, so the normal recommendation for a HA production environment would be to deploy a replica set and use rolling maintenance (i.e. compact the secondaries first, then step down and compact the primary).
MongoDB 2.4 (and 2.2) currently have database-level write lock granularity. In practice this has not proven a problem for the vast majority of use cases, however multiple collections would allow you to more easily move high activity collections into separate databases if needed.
Further to the previous point .. if you have your data in separate collections, these will be able to take advantage of future improvements in collection-level locking (see SERVER-1240 in the MongoDB Jira issue tracker).
The main problem here is that you will gain very little performance in the current MongoDB versions if you separate out collections into the same database. To get any sort of extra performance over a single collection setup you would need to move the collections out into separate databases, then you will have operational overhead for judging what database you should query etc.
So yes, you could go for 120 collections easily however, you won't really gain anything currently due to: https://jira.mongodb.org/browse/SERVER-1240 not being implemented (anytime soon).
Housing billions of documents in a single collection isn't too bad. I presume that even if you was to house this in separate collections it probably would not be on a single server either, just like sharding a single collection, so any speed reduction due to multi server setup will also not matter in this case.
In my personal opinion, using a single collection is easier on everything.

MongoDB: BIllions of documents in a collection

I need to load 6.6 billion bigrams into a collection but I can't find any information on the best way to do this.
Loading that many documents onto a single primary key index would take forever but as far as I'm aware mongo doesn't support the equivalent of partitioning?
Would sharding help? Should I try and split the data set over many collections and build that logic into my application?
It's hard to say what the optimal bulk insert is -- this partly depends on the size of the objects you're inserting and other immeasurable factors. You could try a few ranges and see what gives you the best performance. As an alternative, some people like using mongoimport, which is pretty fast, but your import data needs to be json or csv. There's obviously mongodrestore, if the data is in BSON format.
Mongo can easily handle billions of documents and can have billions of documents in the one collection but remember that the maximum document size is 16mb. There are many folk with billions of documents in MongoDB and there's lots of discussions about it on the MongoDB Google User Group. Here's a document on using a large number of collections that you may like to read, if you change your mind and want to have multiple collections instead. The more collections you have, the more indexes you will have also, which probably isn't what you want.
Here's a presentation from Craigslist on inserting billions of documents into MongoDB and the guy's blogpost.
It does look like sharding would be a good solution for you but typically sharding is used for scaling across multiple servers and a lot of folk do it because they want to scale their writes or they are unable to keep their working set (data and indexes) in RAM. It is perfectly reasonable to start off with a single server and then move to a shard or replica-set as your data grows or you need extra redundancy and resilience.
However, there are other users use multiple mongods to get around locking limits of a single mongod with lots of writes. It's obvious but still worth saying but a multi-mongod setup is more complex to manage than a single server. If your IO or cpu isn't maxed out here, your working set is smaller than RAM and your data is easy to keep balanced (pretty randomly distributed), you should see improvement (with sharding on a single server). As a FYI, there is potential for memory and IO contention. With 2.2 having improved concurrency with db locking, I suspect that there will be much less of a reason for such a deployment.
You need to plan your move to sharding properly, i.e. think carefully about choosing your shard key. If you go this way then it's best to pre-split and turn off the balancer. It will be counter-productive to be moving data around to keep things balanced which means you will need to decide up front how to split it. Additionally, it is sometimes important to design your documents with the idea that some field will be useful for sharding on, or as a primary key.
Here's some good links -
Choosing a Shard Key
Blog post on shard keys
Overview presentation on sharding
Presentation on Sharding Best Practices
You can absolutely shard data in MongoDB (which partitions across N servers on the shard key). In fact, that's one of it's core strengths. There is no need to do that in your application.
For most use cases, I would strongly recommend doing that for 6.6 billion documents. In my experience, MongoDB performs better with a number of mid-range servers rather than one large one.